Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons

被引:101
作者
Jung, Jesper [1 ]
Sondergaard, Thomas [1 ]
Bozhevolnyi, Sergey I. [2 ]
机构
[1] Univ Aalborg, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[2] Univ So Denmark, Inst Sensors Signals & Electrotech SENSE, DK-5230 Odense M, Denmark
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 03期
关键词
Green's function methods; nanostructured materials; polaritons; strip line resonators; surface plasmons; NANOSTRUCTURES; RESONATORS; EFFICIENCY; ANTENNAS; OPTICS; SINGLE; MODES; LIGHT; STRIP; FILM;
D O I
10.1103/PhysRevB.79.035401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gap plasmon-polariton (GPP) nanoresonators based on a metal nanostrip separated with a small gap from a metal surface or metal block are considered. Scattering resonances and field enhancements are studied for two-dimensional structures using the Green's-function surface integral equation method (GFSIEM). For small gaps, we show that the scattering resonances occur due to the constructive interference of counterpropagating GPPs, forming standing waves. By varying the gap size we find that the resonance wavelength can be tuned over a wide range of wavelengths, which makes the resonators interesting for spectroscopic and sensing applications, and observe the transition between GPP-based resonators (for narrow gaps) and slow surface plasmon-polariton (SPP) strip resonators (for wide gaps). Considering the resonant field distributions, we find that, for an insulator thickness of 10 nm, the maximum field enhancement (with respect to the incident field) can reach values close to 50 along the line passing through the gap center. For the case of a strip placed close to a metal surface, two scattering channels, viz., the out-of-plane scattering and the scattering into SPPs (propagating along the surface) are evaluated separately using a generalized version of the GFSIEM. We find that, even though the out-of-plane scattering is in general dominating in the considered range of parameters, scattering into SPPs can be very efficient for smaller gaps featuring a cross section that at resonance even exceeds the strip width. The considered properties of GPP nanoresonators, i.e., resonant scattering and local-field enhancements along with efficient scattering into SPPs, hold promises for their useful applications within plasmonic sensing devices.
引用
收藏
页数:8
相关论文
共 35 条
[21]   Tunable composite nanoparticle for plasmonics [J].
Leveque, Gaeetan ;
Martin, Olivier J. F. .
OPTICS LETTERS, 2006, 31 (18) :2750-2752
[22]   Efficient unidirectional nanoslit couplers for surface plasmons [J].
Lopez-Tejeira, F. ;
Rodrigo, Sergio G. ;
Martin-Moreno, L. ;
Garcia-Vidal, F. J. ;
Devaux, E. ;
Ebbesen, T. W. ;
Krenn, J. R. ;
Radko, I. P. ;
Bozhevolnyi, S. I. ;
Gonzalez, M. U. ;
Weeber, J. C. ;
Dereux, A. .
NATURE PHYSICS, 2007, 3 (05) :324-328
[23]   Modulation of surface plasmon coupling-in by one-dimensional surface corrugation [J].
Lopez-Tejeira, F. ;
Rodrigo, Sergio G. ;
Martin-Moreno, L. ;
Garcia-Vidal, F. J. ;
Devaux, E. ;
Dintinger, J. ;
Ebbesen, T. W. ;
Krenn, J. R. ;
Radko, I. P. ;
Bozhevolnyi, S. I. ;
Gonzalez, M. U. ;
Weeber, J. C. ;
Dereux, A. .
NEW JOURNAL OF PHYSICS, 2008, 10
[24]   Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity [J].
Miyazaki, HT ;
Kurokawa, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[25]   Resonant optical antennas [J].
Mühlschlegel, P ;
Eisler, HJ ;
Martin, OJF ;
Hecht, B ;
Pohl, DW .
SCIENCE, 2005, 308 (5728) :1607-1609
[26]   Optical scattering resonances of single and coupled dimer plasmonic nanoantennas [J].
Muskens, O. L. ;
Giannini, V. ;
Sanchez-Gil, J. A. ;
Rivas, J. Gomez .
OPTICS EXPRESS, 2007, 15 (26) :17736-17746
[27]   Resonances of individual metal nanowires in the infrared [J].
Neubrech, F. ;
Kolb, T. ;
Lovrincic, R. ;
Fahsold, G. ;
Pucci, A. ;
Aizpurua, J. ;
Cornelius, T. W. ;
Toimil-Molares, M. E. ;
Neumann, R. ;
Karim, S. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[28]   Effective wavelength scaling for optical antennas [J].
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2007, 98 (26)
[29]  
Raether H., 1988, Surface Plasmons
[30]   Strip and gap plasmon polariton optical resonators [J].
Sondergaard, T. ;
Bozhevolnyi, S. I. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (01) :9-19