Bayesian restoration of high resolution SAR imagery with Gauss-Markov random fields

被引:0
|
作者
Chen, X [1 ]
Zhang, H [1 ]
Wang, C [1 ]
Wu, T [1 ]
机构
[1] CAS, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
关键词
SAR; Gauss-Markov random field; speckle;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we introduce a Bayesian restoration approach with Gauss-Markov random fields (GMRF) for high resolution SAR imagery. By adopting Bayesian analysis framework, the restoration model of degraded image of markov random field can be built, and then the problem of image restoration is transformed into the combined optimization problem of solving maximum a posterior (MAP) estimation of model or minimum energy function, random field model parameters can be also estimated directly from noise image, thus speckle is effectively reduced. A high-resolution airborne image is chosen for experiments, the results show that the proposed method outperforms standard local statistics adapted de-noising techniques in terms of speckle reducing and preservation of structural detail information.
引用
收藏
页码:4648 / 4650
页数:3
相关论文
共 50 条
  • [21] A sequential bayesian beamformer for Gauss-Markov signals
    Lam, CWJ
    Singer, AC
    SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, 2002, : 28 - 32
  • [22] DIVERGENCES OF GAUSS-MARKOV RANDOM-FIELDS WITH APPLICATION TO STATISTICAL-INFERENCE
    JANZURA, M
    KYBERNETIKA, 1988, 24 (06) : 401 - 412
  • [23] Classification of hyperspectral spatial/spectral patterns using Gauss-Markov random fields
    Smartt, Heidi A.
    Tyo, J. Scott
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [24] Ordering for Shift-in-Mean of Gauss-Markov Random Fields with Dependent Observations
    Zhang, Jiangfan
    Wei, Chuanming
    Blum, Rick S.
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 65 - 68
  • [25] A nested recursive approach to MAP estimation based on Gauss-Markov random fields
    Kaufhold, J
    Karl, WC
    Castanon, DA
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 2, 1998, : 98 - 102
  • [26] ASYMPTOTIC THEORY OF PARAMETER-ESTIMATION FOR GAUSS-MARKOV RANDOM-FIELDS
    JANZURA, M
    KYBERNETIKA, 1988, 24 (03) : 161 - 176
  • [27] Distributed Estimation of Gauss-Markov Random Fields With One-Bit Quantized Data
    Fang, Jun
    Li, Hongbin
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (05) : 449 - 452
  • [28] Optimal smoothing for spherical Gauss-Markov Random Fields with application to weather data estimation
    Borri, Alessandro
    Carravetta, Francesco
    White, Langford B.
    EUROPEAN JOURNAL OF CONTROL, 2017, 33 : 43 - 51
  • [29] Transmission tomography reconstruction using compound Gauss-Markov random fields and ordered subsets
    Lopez, A.
    Martin, J. M.
    Molina, R.
    Katsaggelos, A. K.
    IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 559 - 569
  • [30] Gauss-Markov Random Field model for non-quadratic regularization of complex SAR images
    Gleich, Dusan
    Planninsic, Peter
    Kseneman, Matej
    Soccorsi, Matteo
    PROCEEDINGS OF THE 4TH WSEAS INTERNATIONAL CONFERENCE ON REMOTE SENSING (REMOTE'08): RECENT ADVANCES IN REMOTE SENSING, 2008, : 79 - +