Bayesian restoration of high resolution SAR imagery with Gauss-Markov random fields

被引:0
|
作者
Chen, X [1 ]
Zhang, H [1 ]
Wang, C [1 ]
Wu, T [1 ]
机构
[1] CAS, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
关键词
SAR; Gauss-Markov random field; speckle;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we introduce a Bayesian restoration approach with Gauss-Markov random fields (GMRF) for high resolution SAR imagery. By adopting Bayesian analysis framework, the restoration model of degraded image of markov random field can be built, and then the problem of image restoration is transformed into the combined optimization problem of solving maximum a posterior (MAP) estimation of model or minimum energy function, random field model parameters can be also estimated directly from noise image, thus speckle is effectively reduced. A high-resolution airborne image is chosen for experiments, the results show that the proposed method outperforms standard local statistics adapted de-noising techniques in terms of speckle reducing and preservation of structural detail information.
引用
收藏
页码:4648 / 4650
页数:3
相关论文
共 50 条
  • [1] Bayesian multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    Vega, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1642 - 1654
  • [2] HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
    WONG, E
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1625 - &
  • [3] Multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 141 - 144
  • [4] An iterative method for Bayesian Gauss-Markov image restoration
    Bouhamidi, A.
    Jbilou, K.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 361 - 372
  • [5] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814
  • [6] Wavelet-based despeckling of SAR images using Gauss-Markov random fields
    Gleich, Dusan
    Datcu, Mihai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 4127 - 4143
  • [7] Gauss-Markov random fields (GMrf) with continuous indices
    Moura, JMF
    Goswami, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) : 1560 - 1573
  • [8] RECURSIVE STRUCTURE OF NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS
    MOURA, JMF
    BALRAM, N
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 334 - 354
  • [9] Conditional simulation and estimation of Gauss-Markov random fields using the Bayesian nearest neighbor method
    Bagtzoglou, AC
    Ababou, R
    GEOENV I - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 1997, 9 : 477 - 491
  • [10] PROBABILISTIC IMAGE PROCESSING BY EXTENDED GAUSS-MARKOV RANDOM FIELDS
    Tanaka, Kazuyuki
    Morin, Nicolas
    Yasuda, Muneki
    Titterington, D. M.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 617 - +