Goodness-of-fit tests for linear regression models with missing response data

被引:27
作者
González-Manteiga, W
Pérez-González, A
机构
[1] Univ Santiago Compostela, Dept Estadist & Invest Operat, ES-15782 Santiago De Compostela, Spain
[2] Univ Vigo, Dept Estadist & Invest Operat, ES-32004 Orense, Spain
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2006年 / 34卷 / 01期
关键词
bootstrap; goodness-of-fit test; missing at random; multivariate local linear smoother; nonparametric regression;
D O I
10.1002/cjs.5550340111
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors show how to test the goodness-of-fit of a linear regression model when there are missing data in the response variable. Their statistics are based on the L-2 distance between nonparametric estimators of the regression function and a root n-consistent estimator of the same function under the parametric model. They obtain the limit distribution of the statistics and check the validity of their bootstrap version. Finally, a simulation study allows them to examine the behaviour of their tests, whether the samples are complete or not.
引用
收藏
页码:149 / 170
页数:22
相关论文
共 24 条
[1]   Goodness-of-fit test for linear models based on local polynomials [J].
Alcalá, JT ;
Cristóbal, JA ;
González-Manteiga, W .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) :39-46
[2]   Optimal designs for testing the functional form of a regression via nonparametric estimation techniques [J].
Biedermann, S ;
Dette, H .
STATISTICS & PROBABILITY LETTERS, 2001, 52 (02) :215-224
[4]   NONPARAMETRIC REGRESSION ESTIMATION WITH MISSING DATA [J].
CHU, CK ;
CHENG, PE .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) :85-99
[5]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277
[6]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[7]   Some higher-order theory for a consistent non-parametric model specification test [J].
Fan, YQ ;
Linton, O .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 109 (1-2) :125-154
[8]   Nonparametric mean estimation with missing data [J].
González-Manteiga, W ;
Pérez-González, A .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (02) :277-303
[9]  
GONZALEZMANTEIG.W, 1993, TEST, V2, P161
[10]   COMPARING NONPARAMETRIC VERSUS PARAMETRIC REGRESSION FITS [J].
HARDLE, W ;
MAMMEN, E .
ANNALS OF STATISTICS, 1993, 21 (04) :1926-1947