The Discontinuous Galerkin Finite Element Time Domain Method (DGFETD)

被引:0
作者
Gedney, S. D. [1 ]
Kramer, T. [1 ]
Luo, C. [1 ]
Roden, J. A. [2 ]
Crawford, R. [2 ]
Guernsey, B. [2 ]
Beggs, John [2 ]
Miller, J. A. [2 ]
机构
[1] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[2] The Aerosp Corp, Chantilly, VA USA
来源
2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3 | 2008年
关键词
Maxwell's equations; Finite-Element Method; High-Order Method; Perfectly Matched Layer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Discontinuous Galerkin Finite-Element Time-Domain method is presented. The method is based on a high-order finite element discretization of Maxwell's time-dependent curl equations. The mesh is decomposed into contiguous sub-domains of finite-elements with independent function expansions. The fields are coupled across the sub-domain boundaries by enforcing the tangential field continuity. This leads to a locally implicit, globally explicit difference operator that provides an efficient high-order accurate time-dependent solution. An efficient implementation of the perfectly matched layer media boundary truncation is also presented that allows general tetrahedral meshing through the PML region.
引用
收藏
页码:768 / +
页数:2
相关论文
共 12 条
[1]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[2]   High-order RKDG methods for computational electromagnetics [J].
Chen, MH ;
Cockburn, B ;
Reitich, F .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :205-226
[3]  
Cockburn B. (Bernardo), 2000, Discontinuous Galerkin Methods: Theory, Computation, and Applications, V11
[4]  
GEDNEY S, 2007, IEEE INT S EL COMP H
[5]   An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J].
Gedney, SD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (12) :1630-1639
[6]   Numerical stability of nonorthogonalFDTD methods [J].
Gedney, SD ;
Roden, JA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (02) :231-239
[7]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[8]  
Hesthaven JS, 2004, CMES-COMP MODEL ENG, V5, P395
[9]   Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell's equations [J].
Hesthaven, JS ;
Warburton, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) :186-221
[10]   Construction of nearly orthogonal Nedelec bases for rapid convergence with multilevel preconditioned solvers [J].
Sun, DK ;
Lee, JF ;
Cendes, Z .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04) :1053-1076