Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

被引:216
作者
Zhang, Ligang [1 ,2 ]
Chen, Xiufang [1 ]
Guan, Jing [1 ]
Jiang, Yijun [1 ]
Hou, Tonggang [1 ]
Mu, Xindong [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biobased Mat, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrides; Polymers; Semiconductors; Catalytic properties; Optical properties; METAL-FREE CATALYSTS; HYDROGEN EVOLUTION; IRRADIATION; PHOTODEGRADATION; SEMICONDUCTORS; OXIDATION; BENZENE; G-C3N4; TIO2; C3N4;
D O I
10.1016/j.materresbull.2013.05.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C3N4, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3485 / 3491
页数:7
相关论文
共 33 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light [J].
Chen, Xiufang ;
Jun, Young-Si ;
Takanabe, Kazuhiro ;
Maeda, Kazuhiko ;
Domen, Kazunari ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
CHEMISTRY OF MATERIALS, 2009, 21 (18) :4093-4095
[3]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[4]   Making Metal-Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light [J].
Di, Yan ;
Wang, Xinchen ;
Thomas, Arne ;
Antonietti, Markus .
CHEMCATCHEM, 2010, 2 (07) :834-838
[5]   HETEROGENEOUS PHOTOCATALYSIS [J].
FOX, MA ;
DULAY, MT .
CHEMICAL REVIEWS, 1993, 93 (01) :341-357
[6]   Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity [J].
Ge, Lei ;
Han, Changcun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 117 :268-274
[7]   Metal-free activation CO2 by mesoporous graphitic carbon nitride [J].
Goettmann, Frederic ;
Thomas, Arne ;
Antonietti, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (15) :2717-2720
[8]   Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene [J].
Goettmann, Frederic ;
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (27) :4467-4471
[9]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[10]   A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J].
Kudo, A ;
Omori, K ;
Kato, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (49) :11459-11467