Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits

被引:55
作者
Costa, Rui P. [1 ]
Sjoestroem, P. Jesper [2 ]
van Rossum, Mark C. W. [3 ]
机构
[1] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Neuroinformat Doctoral Training Ctr, Edinburgh EH8 9AB, Midlothian, Scotland
[2] McGill Univ, Dept Neurol & Neurosurg, Res Inst, McGill Univ Hlth Ctr, Montreal, PQ, Canada
[3] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9AB, Midlothian, Scotland
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
short-term synaptic plasticity; probabilistic inference; neocortical circuits; experimental design; parameter estimation; TARGET-SPECIFIC EXPRESSION; 5 PYRAMIDAL NEURONS; TRANSMITTER RELEASE; EXCITATORY SYNAPSES; PRESYNAPTIC NMDA; LAYER; 2/3; FACILITATION; DEPRESSION; MODEL; HYPERCONNECTIVITY;
D O I
10.3389/fncom.2013.00075
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an important step towards understanding and modeling neural systems. Phenomenological models have been developed, but they are usually fitted to experimental data using least-mean-square methods. We demonstrate that for typical synaptic dynamics such fitting may give unreliable results. As a solution, we introduce a Bayesian formulation, which yields the posterior distribution over the model parameters given the data. First, we show that common STP protocols yield broad distributions over some model parameters. Using our result we propose a experimental protocol to more accurately determine synaptic dynamics parameters. Next, we infer the model parameters using experimental data from three different neocortical excitatory connection types. This reveals connection-specific distributions, which we use to classify synaptic dynamics. Our approach to demarcate connection-specific synaptic dynamics is an important improvement on the state of the art and reveals novel features from existing data.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Synaptic computation [J].
Abbott, LF ;
Regehr, WG .
NATURE, 2004, 431 (7010) :796-803
[2]  
Abbott LF, 1997, SCIENCE, V275, P220, DOI 10.1126/science.275.5297.221
[3]  
[Anonymous], P 31 ANN M ASS COMP
[4]   Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis [J].
Bhumbra, G. S. ;
Beato, M. .
JOURNAL OF NEUROPHYSIOLOGY, 2013, 109 (02) :603-620
[5]   General methods for monitoring convergence of iterative simulations [J].
Brooks, SP ;
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) :434-455
[6]   Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits [J].
Buchanan, Katherine A. ;
Blackman, Arne V. ;
Moreau, Alexandre W. ;
Elgar, Dale ;
Costa, Rui P. ;
Lalanne, Txomin ;
Jones, Adam A. Tudor ;
Oyrer, Julia ;
Sjostrom, P. Jesper .
NEURON, 2012, 75 (03) :451-466
[7]  
Calinski T., 1974, Communications in Statistics-theory and Methods, V3, P1, DOI [10.1080/03610927408827101, DOI 10.1080/03610927408827101]
[8]   A novel learning rule for long-term plasticity of short-term synaptic plasticity enhances temporal processing [J].
Carvalho, Tiago P. ;
Buonomano, Dean V. .
FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2011, 5
[9]   Presynaptic Development at L4 to L2/3 Excitatory Synapses Follows Different Time Courses in Visual and Somatosensory Cortex [J].
Cheetham, Claire E. J. ;
Fox, Kevin .
JOURNAL OF NEUROSCIENCE, 2010, 30 (38) :12566-12571
[10]  
Dittman JS, 2000, J NEUROSCI, V20, P1374