Weighted Hardy-Type Inequalities in Variable Exponent Morrey-Type Spaces

被引:9
作者
Lukkassen, Dag [1 ]
Persson, Lars-Erik [2 ,3 ]
Samko, Stefan [4 ]
Wall, Peter [2 ]
机构
[1] Narvik Univ Coll & Norut Narvik, N-8505 Narvik, Norway
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] Univ Algarve, FCT, P-8005139 Faro, Portugal
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2013年
关键词
SINGULAR INTEGRAL-OPERATORS; POTENTIAL-OPERATORS; LEBESGUE SPACES; BOUNDEDNESS;
D O I
10.1155/2013/716029
中图分类号
学科分类号
摘要
We study the p(.) -> q(.) boundedness of weighted multidimensional Hardy-type operators H-w(alpha(.)) and H-w(alpha(.)) of variable order alpha(x), with radial weight w(vertical bar x vertical bar), from a variable exponent locally generalized Morrey space L-p(.),L-phi(.)(R-n, w) to another L-q(.),L-psi(.)(R-n, w). The exponents are assumed to satisfy the decay condition at the origin and infinity. We construct certain functions, defined by p, alpha, and phi, the belongness of which to the resulting space L-q(.),L-psi(.)(R-n, w) is sufficient for such a boundedness. Under additional assumptions on phi/w, this condition is also necessary. We also give the boundedness conditions in terms of Zygmund-type integral inequalities for the functions phi and phi/w.
引用
收藏
页数:11
相关论文
共 44 条
[1]  
Adams DR, 2004, INDIANA U MATH J, V53, P1629
[2]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[3]   Maximal, potential and singular type operators on Herz spaces with variable exponents [J].
Almeida, Alexandre ;
Drihem, Douadi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :781-795
[4]  
[Anonymous], 2004, Fract. Calc. Appl. Anal.
[5]  
[Anonymous], REAL ANAL EXCHANGE
[6]  
[Anonymous], 2007, Fract. Calc. Appl. Anal.
[7]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[8]  
[Anonymous], 2010, J. Math. Sci, DOI [DOI 10.1007/S10958-010-0095-7, 10.1007/s10958-010-0095-7]
[9]  
[Anonymous], 1999, Proc. A. Razmadze Math. Inst.
[10]  
Arai H, 1997, MATH NACHR, V185, P5