Fluctuation dynamics in a relativistic fluid with a critical point

被引:45
作者
An, Xin [1 ]
Basar, Gokce [2 ]
Stephanov, Mikhail [1 ]
Yee, Ho-Ung [1 ,3 ]
机构
[1] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[2] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
关键词
HYDRODYNAMICS;
D O I
10.1103/PhysRevC.102.034901
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
To describe dynamics of bulk and fluctuations near the QCD critical point we develop general relativistic fluctuation formalism for a fluid carrying baryon charge. Feedback of fluctuations modifies hydrodynamic coefficients including bulk viscosity and conductivity and introduces nonlocal and noninstantaneous terms in constitutive equations. We perform necessary ultraviolet (short-distance) renormalization to obtain cutoff -independent deterministic equations suitable for numerical implementation. We use the equations to calculate the universal nonanalytic small-frequency dependence of transport coefficients due to fluctuations (long-time tails). Focusing on the critical mode we show how this general formalism matches existing Hydro+ description of fluctuations near the QCD critical point and nontrivially extends it inside and outside of the critical region.
引用
收藏
页数:25
相关论文
共 30 条
[1]   Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory [J].
Akamatsu, Yukinao ;
Mazeliauskas, Aleksas ;
Teaney, Derek .
PHYSICAL REVIEW C, 2018, 97 (02)
[2]   Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion [J].
Akamatsu, Yukinao ;
Mazeliauskas, Aleksas ;
Teaney, Derek .
PHYSICAL REVIEW C, 2017, 95 (01)
[3]   Relativistic hydrodynamic fluctuations [J].
An, Xin ;
Basar, Gokce ;
Stephanov, Mikhail ;
Yee, Ho-Ung .
PHYSICAL REVIEW C, 2019, 100 (02)
[4]  
Andreev A., 1970, ZH EKSP TEOR FIZ, V59, P1819
[5]  
ANDREEV AF, 1978, ZH EKSP TEOR FIZ+, V75, P1132
[6]  
ANDREEV AF, 1980, ZH EKSP TEOR FIZ+, V78, P2064
[7]  
[Anonymous], 2013, Fluid Mechanics: Volume 6
[8]  
[Anonymous], ARXIV10072613NUCLEX
[9]   Nonlinear causality of general first-order relativistic viscous hydrodynamics [J].
Bemfica, Fabio S. ;
Disconzi, Marcelo M. ;
Noronha, Jorge .
PHYSICAL REVIEW D, 2019, 100 (10)
[10]   Causality and existence of solutions of relativistic viscous fluid dynamics with gravity [J].
Bemfica, Fabio S. ;
Disconzi, Marcelo M. ;
Noronha, Jorge .
PHYSICAL REVIEW D, 2018, 98 (10)