Predicting RNA SHAPE scores with deep learning

被引:1
作者
Bliss, Noah [1 ]
Bindewald, Eckart [2 ]
Shapiro, Bruce A. [1 ]
机构
[1] NCI, RNA Biol Lab, Frederick, MD 21701 USA
[2] Frederick Natl Lab Canc Res, Basic Sci Program, Frederick, MD USA
基金
美国国家卫生研究院;
关键词
SHAPE; RNA; secondary structure; SHAPE-MaP; deep learning; neural network;
D O I
10.1080/15476286.2020.1760534
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secondary structure prediction approaches rely typically on models of equilibrium free energies that are themselves based on in vitro physical chemistry. Recent transcriptome-wide experiments of in vivo RNA structure based on SHAPE-MaP experiments provide important information that may make it possible to extend current in vitro-based RNA folding models in order to improve the accuracy of computational RNA folding simulations with respect to the experimentally measured in vivo RNA secondary structure. Here we present a machine learning approach that utilizes RNA secondary structure prediction results and nucleotide sequence in order to predict in vivo SHAPE scores. We show that this approach has a higher Pearson correlation coefficient with experimental SHAPE scores than thermodynamic folding. This could be an important step towards augmenting experimental results with computational predictions and help with RNA secondary structure predictions that inherently take in-vivo folding properties into account.
引用
收藏
页码:1324 / 1330
页数:7
相关论文
共 16 条
[1]   Correlating SHAPE signatures with three-dimensional RNA structures [J].
Bindewald, Eckart ;
Wendeler, Michaela ;
Legiewicz, Michal ;
Bona, Marion K. ;
Wang, Yi ;
Pritt, Mark J. ;
Le Grice, Stuart F. J. ;
Shapiro, Bruce A. .
RNA, 2011, 17 (09) :1688-1696
[2]  
Chollet F., 2018, Keras: The python deep learning library
[3]   In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features [J].
Ding, Yiliang ;
Tang, Yin ;
Kwok, Chun Kit ;
Zhang, Yu ;
Bevilacqua, Philip C. ;
Assmann, Sarah M. .
NATURE, 2014, 505 (7485) :696-+
[4]   Bridging the gap between in vitro and in vivo RNA folding [J].
Leamy, Kathleen A. ;
Assmann, Sarah M. ;
Mathews, David H. ;
Bevilacqua, Philip C. .
QUARTERLY REVIEWS OF BIOPHYSICS, 2016, 49
[5]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[6]  
Li G, 2019, ANIMAL, V13, P2060, DOI [10.1017/S1751731118003440, 10.1017/s1751731118003440]
[7]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
[8]   SHAPE-directed RNA secondary structure prediction [J].
Low, Justin T. ;
Weeks, Kevin M. .
METHODS, 2010, 52 (02) :150-158
[9]   ShaKer: RNA SHAPE prediction using graph kernel [J].
Mautner, Stefan ;
Montaseri, Soheila ;
Miladi, Milad ;
Raden, Martin ;
Costa, Fabrizio ;
Backofen, Rolf .
BIOINFORMATICS, 2019, 35 (14) :I354-I359
[10]   Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing [J].
Mustoe, Anthony M. ;
Busan, Steven ;
Rice, Greggory M. ;
Hajdin, Christine E. ;
Peterson, Brant K. ;
Ruda, Vera M. ;
Kubica, Neil ;
Nutiu, Razvan ;
Baryza, Jeremy L. ;
Weeks, Kevin M. .
CELL, 2018, 173 (01) :181-+