On the minimum length of quaternary linear codes of dimension five

被引:18
|
作者
Landjev, IN
Maruta, T
机构
[1] Bulgarian Acad Sci, Inst Math, BU-1113 Sofia, Bulgaria
[2] Aichi Prefectural Univ, Dept Informat Syst, Aichi 4801198, Japan
关键词
quaternary linear codes; minimum length bounds; minihypers;
D O I
10.1016/S0012-365X(98)00354-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(q)(k,d) be the smallest integer n for which there exists a linear code of length n, dimension k and minimum distance d, over the q-element field. In this paper we prove the nonexistence of quaternary linear codes with parameters [190,5,141], [239,5,178], [275,5,205], [288,5,215], [291,5,217] and [488,5,365]. This gives an improved lower bound of n(4)(5,d) for d = 141,142 and determines the exact value of n(4)(5,d) for d = 178, 205, 206, 215, 217, 218, 365, 366, 367, 368. The updated table of n(4)(5,d) is also given. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 36 条
  • [21] A Characterization of Some Minihypers and its Application to Linear Codes
    Tatsuya Maruta
    Geometriae Dedicata, 1999, 74 : 305 - 311
  • [22] Linear codes close to the Griesmer bound and the related geometric structures
    Assia Rousseva
    Ivan Landjev
    Designs, Codes and Cryptography, 2019, 87 : 841 - 854
  • [23] Linear codes close to the Griesmer bound and the related geometric structures
    Rousseva, Assia
    Landjev, Ivan
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 841 - 854
  • [24] Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound
    De Beule, J.
    Metsch, K.
    Storme, L.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 261 - 272
  • [25] Z2Z4-linear codes: rank and kernel
    Fernandez-Cordoba, Cristina
    Pujol, Jaume
    Villanueva, Merce
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (01) : 43 - 59
  • [26] A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound
    I. Landjev
    L. Storme
    Designs, Codes and Cryptography, 2007, 45 : 123 - 138
  • [27] Z2Z4-linear codes: generator matrices and duality
    Borges, J.
    Fernandez-Cordoba, C.
    Pujol, J.
    Rifa, J.
    Villanueva, M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) : 167 - 179
  • [28] A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound
    Landjev, I.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 45 (01) : 123 - 138
  • [29] Minihypers and Linear Codes Meeting the Griesmer Bound: Improvements to Results of Hamada, Helleseth and Maekawa
    S. Ferret
    L. Storme
    Designs, Codes and Cryptography, 2002, 25 : 143 - 162
  • [30] Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes
    Simeon Ball
    Szabolcs L. Fancsali
    Designs, Codes and Cryptography, 2009, 53 : 119 - 136