On the minimum length of quaternary linear codes of dimension five

被引:19
作者
Landjev, IN
Maruta, T
机构
[1] Bulgarian Acad Sci, Inst Math, BU-1113 Sofia, Bulgaria
[2] Aichi Prefectural Univ, Dept Informat Syst, Aichi 4801198, Japan
关键词
quaternary linear codes; minimum length bounds; minihypers;
D O I
10.1016/S0012-365X(98)00354-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(q)(k,d) be the smallest integer n for which there exists a linear code of length n, dimension k and minimum distance d, over the q-element field. In this paper we prove the nonexistence of quaternary linear codes with parameters [190,5,141], [239,5,178], [275,5,205], [288,5,215], [291,5,217] and [488,5,365]. This gives an improved lower bound of n(4)(5,d) for d = 141,142 and determines the exact value of n(4)(5,d) for d = 178, 205, 206, 215, 217, 218, 365, 366, 367, 368. The updated table of n(4)(5,d) is also given. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 18 条
[1]   Optimal quaternary linear codes of dimension five [J].
Boukliev, I ;
Daskalov, R ;
Kapralov, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) :1228-1235
[2]   New bounds for the minimum length of quaternary linear codes of dimension five [J].
Boukliev, IG .
DISCRETE MATHEMATICS, 1997, 169 (1-3) :185-192
[3]   OPTIMAL LINEAR CODES OVER GF(4) [J].
GREENOUGH, PP ;
HILL, R .
DISCRETE MATHEMATICS, 1994, 125 (1-3) :187-199
[4]  
GRIESMER IH, 1960, IBM J RES DEV, V4, P532
[5]   A CHARACTERIZATION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND USING A MINIHYPER IN A FINITE PROJECTIVE GEOMETRY [J].
HAMADA, N .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :229-268
[6]  
HAMADA N, 1996, MATH JPN, V43, P7
[7]  
HAMADA N, IN PRESS ARS COMBINA
[8]  
HAMADA N, 1993, J COMBIN INFORM SYST, V18, P161
[9]  
HAMADA N, 1990, B OSAKA WOMENS U, V27, P49
[10]  
Hill R, 1995, PROCEEDINGS 1995 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, P345, DOI 10.1109/ISIT.1995.550332