Spherical harmonic analysis of particle velocity distribution function: Comparison of moments and anisotropies using Cluster data

被引:17
作者
Vinas, Adolfo F. [1 ]
Gurgiolo, Chris [2 ]
机构
[1] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Geospace Phys Lab, Greenbelt, MD 20771 USA
[2] Bitterroot Basic Res, Hamilton, MT 59840 USA
关键词
MAGNETIC-FIELD; ELECTRON; EQUATION;
D O I
10.1029/2008JA013633
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression'' technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
引用
收藏
页数:12
相关论文
共 27 条
[1]   The Cluster magnetic field investigation [J].
Balogh, A ;
Dunlop, MW ;
Cowley, SWH ;
Southwood, DJ ;
Thomlinson, JG ;
Glassmeier, KH ;
Musmann, G ;
Luhr, H ;
Buchert, S ;
Acuna, MH ;
Fairfield, DH ;
Slavin, JA ;
Riedler, W ;
Schwingenschuh, K ;
Kivelson, MG .
SPACE SCIENCE REVIEWS, 1997, 79 (1-2) :65-91
[2]  
Bayet M., 1954, J PHYS RADIUM, V15, P795
[3]   Helioseismology [J].
Christensen-Dalsgaard, J .
REVIEWS OF MODERN PHYSICS, 2002, 74 (04) :1073-1129
[4]   THE MAGNETIC-FIELD OF NEPTUNE [J].
CONNERNEY, JEP ;
ACUNA, MH ;
NESS, NF .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1991, 96 :19023-19042
[5]   THE MAGNETIC-FIELD OF JUPITER - A GENERALIZED INVERSE APPROACH [J].
CONNERNEY, JEP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA9) :7679-7693
[6]   SOLAR-WIND ELECTRONS [J].
FELDMAN, WC ;
ASBRIDGE, JR ;
BAME, SJ ;
MONTGOMERY, MD ;
GARY, SP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (31) :4181-4196
[7]   ON THE KINETIC THEORY OF RAREFIED GASES [J].
GRAD, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1949, 2 (04) :331-407
[8]   FOURIER-HERMITE SOLUTIONS OF VLASOV EQUATIONS IN LINEARIZED LIMIT [J].
GRANT, FC ;
FEIX, MR .
PHYSICS OF FLUIDS, 1967, 10 (04) :696-&
[9]   TRANSITION BETWEEN LANDAU AND VAN KAMPEN TREATMENTS OF VLASOV EQUATION [J].
GRANT, FC ;
FEIX, MR .
PHYSICS OF FLUIDS, 1967, 10 (06) :1356-&
[10]   The electric field and wave experiment for the Cluster mission [J].
Gustafsson, G ;
Bostrom, R ;
Holback, B ;
Holmgren, G ;
Lundgren, A ;
Stasiewicz, K ;
Ahlen, L ;
Mozer, FS ;
Pankow, D ;
Harvey, P ;
Berg, P ;
Ulrich, R ;
Pedersen, A ;
Schmidt, R ;
Butler, A ;
Fransen, AWC ;
Klinge, D ;
Thomsen, M ;
Falthammar, CG ;
Lindqvist, PA ;
Christenson, S ;
Holtet, J ;
Lybekk, B ;
Sten, TA ;
Tanskanen, P ;
Lappalainen, K ;
Wygant, J .
SPACE SCIENCE REVIEWS, 1997, 79 (1-2) :137-156