Low cost and state of the art methods to measure nitrous oxide emissions

被引:58
作者
Hensen, Arjan [1 ]
Skiba, Ute [2 ]
Famulari, Daniela [2 ]
机构
[1] Energy Res Ctr Netherlands, NL-1755 ZG Petten, Netherlands
[2] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland
基金
英国自然环境研究理事会;
关键词
chamber methods; infrared analyzers; micrometeorological methods; eddy covariance; EDDY COVARIANCE FLUX; TUNABLE DIODE-LASER; TRACE GAS FLUXES; N2O FLUXES; GRASSLAND SYSTEMS; CHAMBER METHODS; CARBON-DIOXIDE; METHANE; FIELD; EXCHANGE;
D O I
10.1088/1748-9326/8/2/025022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This letter provides an overview of the available measurement techniques for nitrous oxide (N2O) flux measurement. It is presented to aid the choice of the most appropriate methods for different situations. Nitrous oxide is a very potent greenhouse gas; the effect of 1 kg of N2O is estimated to be equivalent to 300 kg of CO2. Emissions of N2O from the soil have a larger uncertainty compared to other greenhouse gases. Important reasons for this are low atmospheric concentration levels and enormous spatial and temporal variability. Traditionally such small increases are measured by chambers and analyzed by gas chromatography. Spatial and temporal resolution is poor, but costs are low. To detect emissions at the field scale and high temporal resolution, differences at tens of ppt levels need to be resolved. Reliable instruments are now available to measure N2O by a range of micrometeorological methods, but at high financial cost. Although chambers are effective in identifying processes and treatment effects and mitigation, the future lies with the more versatile high frequency and high sensitivity sensors.
引用
收藏
页数:10
相关论文
共 72 条
[1]  
[Anonymous], CHEMOS GLOBAL CHANGE
[2]  
Aubinet M, 2000, ADV ECOL RES, V30, P113, DOI 10.1016/S0065-2504(08)60018-5
[3]   Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J].
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 2003, 9 (04) :479-492
[4]   Inverse modeling of European CH4 emissions 2001-2006 [J].
Bergamaschi, P. ;
Krol, M. ;
Meirink, J. F. ;
Dentener, F. ;
Segers, A. ;
van Aardenne, J. ;
Monni, S. ;
Vermeulen, A. T. ;
Schmidt, M. ;
Ramonet, M. ;
Yver, C. ;
Meinhardt, F. ;
Nisbet, E. G. ;
Fisher, R. E. ;
O'Doherty, S. ;
Dlugokencky, E. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[5]  
BUSINGER JA, 1990, J ATMOS OCEAN TECH, V7, P349, DOI 10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO
[6]  
2
[7]   Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment [J].
Christiansen, Jesper Riis ;
Korhonen, Janne F. J. ;
Juszczak, Radoslaw ;
Giebels, Michael ;
Pihlatie, Mari .
PLANT AND SOIL, 2011, 343 (1-2) :171-185
[8]  
Clough T J, 2013, GLOBAL RES ALLIANCE
[9]   Landfill methane emissions measured by enclosure and atmospheric tracer methods [J].
Czepiel, PM ;
Mosher, B ;
Harriss, RC ;
Shorter, JH ;
McManus, JB ;
Kolb, CE ;
Allwine, E ;
Lamb, BK .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D11) :16711-16719
[10]   The influence of atmospheric pressure on landfill methane emissions [J].
Czepiel, PM ;
Shorter, JH ;
Mosher, B ;
Allwine, E ;
McManus, JB ;
Harriss, RC ;
Kolb, CE ;
Lamb, BK .
WASTE MANAGEMENT, 2003, 23 (07) :593-598