Comparisons of grain size-density trajectory during microwave and conventional sintering of titanium nitride

被引:33
作者
Demirskyi, D. [1 ,2 ,3 ]
Agrawal, D. [2 ]
Ragulya, A. [3 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Frantsevich Inst Problems Mat Sci, UA-03680 Kiev 142, Ukraine
关键词
Ceramics; Microwave heating; Sintering; Grain growth; NANOCRYSTALLINE ZIRCONIA; POWDERS; CONSOLIDATION; DENSIFICATION; COMPOSITES; CERAMICS; KINETICS; GROWTH; COPPER; FIELD;
D O I
10.1016/j.jallcom.2013.07.159
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A broad range of sintering temperatures and hold times had been systematically varied to investigate the "relative density/grain size" trajectories for titanium nitride specimens during microwave and conventional sintering. Fully dense materials with a submicron grain size (around 170 nm using microwave sintering and around 240 nm using conventional sintering) are achievable using the simple "ramp & hold" approach. Improvement of the mechanical properties, including increase in hardness (from 18 to 20 GPa), fracture toughness (from 2.9 to 3.4 MPa m(1/2)), was observed due to grain refinement in case of microwave sintering. The area for the future optimization for the sintering schedule for further grain refinement has been proposed. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:498 / 501
页数:4
相关论文
共 40 条
[1]   Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders [J].
Angerer, P ;
Yu, LG ;
Khor, KA ;
Korb, G ;
Zalite, I .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (11) :1919-1927
[2]  
[Anonymous], 2007, NANOPARTICLE TECHNOL
[3]   'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials [J].
Badica, Petre ;
Crisan, Adrian ;
Aldica, Gheorghe ;
Endo, Kazuhiro ;
Borodianska, Hanna ;
Togano, Kazumasa ;
Awaji, Satoshi ;
Watanabe, Kazuo ;
Sakka, Yoshio ;
Vasylkiv, Oleg .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2011, 12 (01)
[4]  
BAUMGARTNER CE, 1988, J AM CERAM SOC, V71, pC350, DOI 10.1111/j.1151-2916.1988.tb05939.x
[5]   Bulk Ti1-xAlxN nanocomposite via spark plasma sintering of nanostructured Ti1-xAlxN-AlN powders [J].
Borodianska, H. ;
Ludvinskaya, T. ;
Sakka, Y. ;
Uvarova, I. ;
Vasylkiv, O. .
SCRIPTA MATERIALIA, 2009, 61 (11) :1020-1023
[6]   Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia [J].
Borodianska, Hanna ;
Demirskyi, Dmytro ;
Sakka, Yoshio ;
Badica, Petre ;
Vasylkiv, Oleg .
CERAMICS INTERNATIONAL, 2012, 38 (05) :4385-4389
[7]   Si3N4-TiN Nanocomposite by Nitration of TiSi2 and Consolidation by Hot Pressing and Spark Plasma Sintering [J].
Borodianska, Hanna ;
Krushinskaya, Larisa ;
Makarenko, Galina ;
Sakka, Yoshio ;
Uvarova, Irina ;
Vasylkiv, Oleg .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (11) :6381-6389
[8]  
Brook R.J., 1982, Proc. Brit. Ceram. Soc, V32, P7
[9]   Sintering dense nanocrystalline ceramics without final-stage grain growth [J].
Chen, IW ;
Wang, XH .
NATURE, 2000, 404 (6774) :168-171
[10]  
David Kingery W., 1976, INTRO CERAMICS, V17