Multiomics and machine learning in lung cancer prognosis

被引:19
作者
Gao, Yanan [1 ]
Zhou, Rui [1 ]
Lyu, Qingwen [1 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Dept Informat, 253 Ind Ave, Guangzhou 510282, Peoples R China
关键词
DIAGNOSIS; STATISTICS; NETWORK; IMAGE;
D O I
10.21037/jtd-2019-itm-013
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
[No abstract available]
引用
收藏
页码:4531 / 4535
页数:5
相关论文
共 25 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids [J].
Alcala, N. ;
Leblay, N. ;
Gabriel, A. A. G. ;
Mangiante, L. ;
Hervas, D. ;
Giffon, T. ;
Sertier, A. S. ;
Ferrari, A. ;
Derks, J. ;
Ghantous, A. ;
Delhomme, T. M. ;
Chabrier, A. ;
Cuenin, C. ;
Abedi-Ardekani, B. ;
Boland, A. ;
Olaso, R. ;
Meyer, V ;
Altmuller, J. ;
Le Calvez-Kelm, F. ;
Durand, G. ;
Voegele, C. ;
Boyault, S. ;
Moonen, L. ;
Lemaitre, N. ;
Lorimier, P. ;
Toffart, A. C. ;
Soltermann, A. ;
Clement, J. H. ;
Saenger, J. ;
Field, J. K. ;
Brevet, M. ;
Blanc-Fournier, C. ;
Galateau-Salle, F. ;
Le Stang, N. ;
Russell, P. A. ;
Wright, G. ;
Sozzi, G. ;
Pastorino, U. ;
Lacomme, S. ;
Vignaud, J. M. ;
Hofman, V ;
Hofman, P. ;
Brustugun, O. T. ;
Lund-Iversen, M. ;
de Montpreville, V. Thomas ;
Muscarella, L. A. ;
Graziano, P. ;
Popper, H. ;
Stojsic, J. ;
Deleuze, J. F. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[4]   Fusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer Patients [J].
Emaminejad, Nastaran ;
Qian, Wei ;
Guan, Yubao ;
Tan, Maxine ;
Qiu, Yuchen ;
Liu, Hong ;
Zheng, Bin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (05) :1034-1043
[5]   Added Value of Computer-aided CT Image Features for Early Lung Cancer Diagnosis with Small Pulmonary Nodules: A Matched Case-Control Study [J].
Huang, Peng ;
Park, Seyoun ;
Yan, Rongkai ;
Lee, Junghoon ;
Chu, Linda C. ;
Lin, Cheng T. ;
Hussien, Amira ;
Rathmell, Joshua ;
Thomas, Brett ;
Chen, Chen ;
Hales, Russell ;
Ettinger, David S. ;
Brock, Malcolm ;
Hu, Ping ;
Fishman, Elliot K. ;
Gabrielson, Edward ;
Lam, Stephen .
RADIOLOGY, 2018, 286 (01) :286-295
[6]   A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer [J].
Hyun, Seung Hyup ;
Ahn, Mi Sun ;
Koh, Young Wha ;
Lee, Su Jin .
CLINICAL NUCLEAR MEDICINE, 2019, 44 (12) :956-960
[7]   Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy [J].
Jayasurya, K. ;
Fung, G. ;
Yu, S. ;
Dehing-Oberije, C. ;
De Ruysscher, D. ;
Hope, A. ;
De Neve, W. ;
Lievens, Y. ;
Lambin, P. ;
Dekker, A. L. A. J. .
MEDICAL PHYSICS, 2010, 37 (04) :1401-1407
[8]  
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20107, 10.3322/caac.20115, 10.3322/caac.21492]
[9]   Machine learning for medical diagnosis: history, state of the art and perspective [J].
Kononenko, I .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2001, 23 (01) :89-109
[10]   Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication [J].
Lee, Tzong-Yi ;
Huang, Kai-Yao ;
Chuang, Cheng-Hsiang ;
Lee, Cheng-Yang ;
Chang, Tzu-Hao .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 87 (87)