Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode

被引:191
作者
Chen, Liang [1 ]
Liu, Bilu [1 ]
Ge, Mingyuan [1 ]
Ma, Yuqiang [1 ]
Abbas, Ahmad N. [1 ]
Zhou, Chongwu [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
tungsten diselenides; transition metal dichalcogenides; TMDCs; chemical vapor deposition; sapphire; aligned growth; layer-over-layer; CHEMICAL-VAPOR-DEPOSITION; FIELD-EFFECT TRANSISTORS; WALLED CARBON NANOTUBES; THIN-FILM TRANSISTORS; LARGE-AREA SYNTHESIS; HIGHLY CRYSTALLINE; MOS2; TRANSISTORS; MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; ENERGY-CONVERSION;
D O I
10.1021/acsnano.5b03043
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials beyond graphene have drawn a lot of attention recently. Among the large family of 2D materials, transitional metal dichalcogenides (TMDCs), for example, molybdenum disulfides (MoS2) and tungsten diselenides (WSe2), have been demonstrated to be good candidates for advanced electronics, optoelectronics, and other applications. Growth of large single-crystalline domains and continuous films of monolayer TMDCs has been achieved recently. Usually, these TMDC flakes nucleate randomly on substrates, and their orientation cannot be controlled. Nucleation control and orientation control are important steps in 2D material growth, because randomly nucleated and orientated flakes will form grain boundaries when adjacent flakes merge together, and the formation of grain boundaries may degrade mechanical and electrical properties of as-grown materials. The use of single crystalline substrates enables the alignment of as-grown TMDC flakes via a substrate-flake epitaxial interaction, as demonstrated recently. Here we report a step-edge-guided nucleation and growth approach for the aligned growth of 2D WSe2 by a chemical vapor deposition method using C-plane sapphire as substrates. We found that at temperatures above 950 degrees C the growth is strongly guided by the atomic steps on the sapphire surface, which leads to the aligned growth of WSe2 along the step edges on the sapphire substrate. In addition, such atomic steps facilitate a layer-over-layer overlapping process to form few-layer WSe2 structures, which is different from the classical layer-by-layer mode for thin-film growth. This work introduces an efficient way to achieve oriented growth of 2D WSe2 and adds fresh knowledge on the growth mechanism of WSe2 and potentially other 2D materials.
引用
收藏
页码:8368 / 8375
页数:8
相关论文
共 62 条
[1]   Two-dimensional flexible nanoelectronics [J].
Akinwande, Deji ;
Petrone, Nicholas ;
Hone, James .
NATURE COMMUNICATIONS, 2014, 5
[2]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[3]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[4]   High-Performance, Highly Bendable MoS2 Transistors with High-K Dielectrics for Flexible Low-Power Systems [J].
Chang, Hsiao-Yu ;
Yang, Shixuan ;
Lee, Jongho ;
Tao, Li ;
Hwang, Wan-Sik ;
Jena, Debdeep ;
Lu, Nanshu ;
Akinwande, Deji .
ACS NANO, 2013, 7 (06) :5446-5452
[5]   Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe2 by Sulfur-Assisted Chemical Vapor Deposition [J].
Chen, Liang ;
Liu, Bilu ;
Abbas, Ahmad N. ;
Ma, Yuqiang ;
Fang, Xin ;
Liu, Yihang ;
Zhou, Chongwu .
ACS NANO, 2014, 8 (11) :11543-11551
[6]   Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process [J].
Chen, Yu-Ze ;
Medina, Henry ;
Su, Teng-Yu ;
Li, Jian-Guang ;
Cheng, Kai-Yuan ;
Chiu, Po-Wen ;
Chueh, Yu-Lun .
ACS NANO, 2015, 9 (04) :4346-4353
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[8]   Vapor-transport growth of high optical quality WSe2 monolayers [J].
Clark, Genevieve ;
Wu, Sanfeng ;
Rivera, Pasqual ;
Finney, Joseph ;
Nguyen, Paul ;
Cobden, David H. ;
Xu, Xiaodong .
APL MATERIALS, 2014, 2 (10)
[9]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[10]   Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition [J].
Cong, Chunxiao ;
Shang, Jingzhi ;
Wu, Xing ;
Cao, Bingchen ;
Peimyoo, Namphung ;
Qiu, Caiyu ;
Sun, Litao ;
Yu, Ting .
ADVANCED OPTICAL MATERIALS, 2014, 2 (02) :131-136