Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder

被引:106
|
作者
Singh, Dinesh [1 ]
Mohan, Chalavadi Krishna [1 ]
机构
[1] IIT Hyderabad, Dept Comp Sci & Engn, Visual Learning & Intelligence Grp, Hyderabad 502205, India
关键词
Accident detection; anomaly detection; deep learning; stacked autoencoder;
D O I
10.1109/TITS.2018.2835308
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vision-based detection of road accidents using traffic surveillance video is a highly desirable but challenging task. In this paper, we propose a novel framework for automatic detection of road accidents in surveillance videos. The proposed framework automatically learns feature representation from the spatiotemporal volumes of raw pixel intensity instead of traditional hand-crafted features. We consider the accident of the vehicles as an unusual incident. The proposed framework extracts deep representation using denoising autoencoders trained over the normal traffic videos. The possibility of an accident is determined based on the reconstruction error and the likelihood of the deep representation. For the likelihood of the deep representation, an unsupervised model is trained using one class support vector machine. Also, the intersection points of the vehicle's trajectories are used to reduce the false alarm rate and increase the reliability of the overall system. We evaluated out proposed approach on real accident videos collected from the CCTV surveillance network of Hyderabad City in India. The experiments on these real accident videos demonstrate the efficacy of the proposed approach.
引用
收藏
页码:879 / 887
页数:9
相关论文
共 50 条
  • [31] Spatio-Temporal Graph Representation Learning for Fraudster Group Detection
    Shehnepoor, Saeedreza
    Togneri, Roberto
    Liu, Wei
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6628 - 6642
  • [32] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [33] Spatio-temporal based video anomaly detection using deep neural networks
    Chaurasia R.K.
    Jaiswal U.C.
    International Journal of Information Technology, 2023, 15 (3) : 1569 - 1581
  • [34] Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning
    Karadayi, Yildiz
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 167 - 182
  • [35] Semi-parametric Spatio-Temporal Hawkes Process for Modelling Road Accidents in Rome
    Di Loro, Pierfrancesco Alaimo
    Mingione, Marco
    Fantozzi, Paolo
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2025, 30 (01) : 8 - 38
  • [36] Spatio-temporal pattern detection in spatio-temporal graphs Use case of invasive team sports and urban road traffic
    Oberoi, Kamaldeep Singh
    Del Mondo, Geraldine
    REVUE INTERNATIONALE DE GEOMATIQUE, 2022, 31 (3-4): : 377 - 399
  • [37] Predicting Road Accidents Based on Current and Historical Spatio-temporal Traffic Flow Data
    Jagannathan, Rupa
    Petrovic, Sanja
    Powell, Gavin
    Roberts, Matthew
    COMPUTATIONAL LOGISTICS, ICCL 2013, 2013, 8197 : 83 - 97
  • [38] Abnormal events detection using spatio-temporal saliency descriptor and fuzzy representation analysis
    Merlin, R. Tino
    Karthick, R.
    Babu, A. Aalan
    Selvi, G. Vennira
    Usha, D.
    Nithya, R.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [40] A UML-based Representation of Spatio-Temporal Evolution in Road Network Data
    Lohfink, Alex
    McPhee, Duncan
    Ware, Mark
    TRANSACTIONS IN GIS, 2010, 14 (06) : 853 - 872