Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder

被引:106
|
作者
Singh, Dinesh [1 ]
Mohan, Chalavadi Krishna [1 ]
机构
[1] IIT Hyderabad, Dept Comp Sci & Engn, Visual Learning & Intelligence Grp, Hyderabad 502205, India
关键词
Accident detection; anomaly detection; deep learning; stacked autoencoder;
D O I
10.1109/TITS.2018.2835308
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vision-based detection of road accidents using traffic surveillance video is a highly desirable but challenging task. In this paper, we propose a novel framework for automatic detection of road accidents in surveillance videos. The proposed framework automatically learns feature representation from the spatiotemporal volumes of raw pixel intensity instead of traditional hand-crafted features. We consider the accident of the vehicles as an unusual incident. The proposed framework extracts deep representation using denoising autoencoders trained over the normal traffic videos. The possibility of an accident is determined based on the reconstruction error and the likelihood of the deep representation. For the likelihood of the deep representation, an unsupervised model is trained using one class support vector machine. Also, the intersection points of the vehicle's trajectories are used to reduce the false alarm rate and increase the reliability of the overall system. We evaluated out proposed approach on real accident videos collected from the CCTV surveillance network of Hyderabad City in India. The experiments on these real accident videos demonstrate the efficacy of the proposed approach.
引用
收藏
页码:879 / 887
页数:9
相关论文
共 50 条
  • [21] Spatio-temporal analysis of road traffic accidents in British Columbia, Canada.
    Lima, V. D.
    Kopec, J. A.
    Sheps, S. B.
    Marion, S. A.
    MacNab, Y. C.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (11) : S48 - S48
  • [22] Abnormal Activity Detection Using Spatio-Temporal Feature and Laplacian Sparse Representation
    Zhao, Yu
    Qiao, Yu
    Yang, Jie
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 410 - 418
  • [23] Similar Trajectory Search with Spatio-Temporal Deep Representation Learning
    Tedjopurnomo, David Alexander
    Li, Xiucheng
    Bao, Zhifeng
    Cong, Gao
    Choudhury, Farhana
    Qin, A. K.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2021, 12 (06)
  • [24] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [25] Deep Sparse Representation Classification with Stacked Autoencoder
    Xu, Bingxin
    Zhou, Xiuling
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 73 - 77
  • [26] Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder
    Aslam, Nazia
    Kolekar, Maheshkumar H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42457 - 42482
  • [27] DriveGuard: Robustification of Automated Driving Systems with Deep Spatio-Temporal Convolutional Autoencoder
    Papachristodoulou, Andreas
    Kyrkou, Christos
    Theocharides, Theocharis
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 107 - 116
  • [28] Motion Style Transfer via Deep Autoencoder and Spatio-Temporal Feature Constraint
    Hu D.
    Peng S.
    Liu X.
    Du J.
    Peng, Shujuan (pshujuan@hqu.edu.cn), 2018, Institute of Computing Technology (30): : 946 - 956
  • [29] Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder
    Nazia Aslam
    Maheshkumar H Kolekar
    Multimedia Tools and Applications, 2022, 81 : 42457 - 42482
  • [30] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195