Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder

被引:106
|
作者
Singh, Dinesh [1 ]
Mohan, Chalavadi Krishna [1 ]
机构
[1] IIT Hyderabad, Dept Comp Sci & Engn, Visual Learning & Intelligence Grp, Hyderabad 502205, India
关键词
Accident detection; anomaly detection; deep learning; stacked autoencoder;
D O I
10.1109/TITS.2018.2835308
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vision-based detection of road accidents using traffic surveillance video is a highly desirable but challenging task. In this paper, we propose a novel framework for automatic detection of road accidents in surveillance videos. The proposed framework automatically learns feature representation from the spatiotemporal volumes of raw pixel intensity instead of traditional hand-crafted features. We consider the accident of the vehicles as an unusual incident. The proposed framework extracts deep representation using denoising autoencoders trained over the normal traffic videos. The possibility of an accident is determined based on the reconstruction error and the likelihood of the deep representation. For the likelihood of the deep representation, an unsupervised model is trained using one class support vector machine. Also, the intersection points of the vehicle's trajectories are used to reduce the false alarm rate and increase the reliability of the overall system. We evaluated out proposed approach on real accident videos collected from the CCTV surveillance network of Hyderabad City in India. The experiments on these real accident videos demonstrate the efficacy of the proposed approach.
引用
收藏
页码:879 / 887
页数:9
相关论文
共 50 条
  • [1] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [2] Spatio-temporal analysis of road traffic accidents in Tunisia
    Turki, Zeineb
    Ghedira, Aymen
    Ouni, Fedy
    Kahloul, Amani
    2022 14TH INTERNATIONAL COLLOQUIUM OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT (LOGISTIQUA2022), 2022, : 244 - 250
  • [3] ABNORMAL EVENT DETECTION IN VIDEOS USING HYBRID SPATIO-TEMPORAL AUTOENCODER
    Wang, Lin
    Zhou, Fuqiang
    Li, Zuoxin
    Zuo, Wangxia
    Tan, Haishu
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2276 - 2280
  • [4] An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
    Jianyu WANG
    Heng ZHANG
    Qiang MIAO
    Chinese Journal of Aeronautics, 2024, 37 (09) : 506 - 520
  • [5] An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
    Wang, Jianyu
    Zhang, Heng
    Miao, Qiang
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (09) : 506 - 520
  • [6] THE SPATIO-TEMPORAL DISTRIBUTION OF ROAD ACCIDENTS IN CLUJ-NAPOCA
    Ivan, Kinga
    Haidu, Ionel
    GEOGRAPHIA TECHNICA, 2012, 7 (02): : 32 - 38
  • [7] Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection
    Yuanhong Zhong
    Xia Chen
    Jinyang Jiang
    Fan Ren
    Science China Information Sciences, 2022, 65
  • [8] Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection
    Yuanhong ZHONG
    Xia CHEN
    Jinyang JIANG
    Fan REN
    ScienceChina(InformationSciences), 2022, 65 (09) : 286 - 288
  • [9] Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection
    Zhong, Yuanhong
    Chen, Xia
    Jiang, Jinyang
    Ren, Fan
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [10] Spatio-temporal Road Detection from Aerial Imagery using CNNs
    Luque, Belen
    Ramon Morros, Josep
    Ruiz-Hidalgo, Javier
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4, 2017, : 493 - 500