共 25 条
Optimization of physical parameters of 'injected' metal electrodes for capacitively coupled contactless conductivity detection on poly(dimethylsiloxane) microchips
被引:0
作者:
Thredgold, Leigh D.
[1
,2
]
Khodakov, Dmitriy A.
[1
,2
]
Ellis, Amanda V.
[1
,2
]
Lenehan, Claire E.
[2
]
机构:
[1] Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol, Sturt Rd,Bedford Pk, Adelaide, SA 5042, Australia
[2] Flinders Univ S Australia, Sch Chem & phys Sci, Bedford Pk, SA 5042, Australia
来源:
MICRO/NANO MATERIALS, DEVICES, AND SYSTEMS
|
2013年
/
8923卷
关键词:
Lab-on-a-Chip;
(CD)-D-4;
microfluidics;
'injected' electrodes;
ELECTROPHORESIS;
CAPILLARY;
D O I:
10.1117/12.2033616
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Capacitively coupled contactless conductivity detection ((CD)-D-4) and its integration with Lab-on-a-Chip (LOC) systems has been well studied. However, most reported methods require multi-step electrode patterning/fabrication processes which in turn leads to difficulty in consistently aligning detection electrodes. These limitations have the potential to compromise analytical performance of the electrodes and increase the time and cost of device production. We have previously demonstrated a simplified approach for (CD)-D-4 electrode integration with poly(dimethylsiloxane) electrophoresis LOC devices by utilizing 'injected' gallium electrodes.(1) The developed fabrication process is fast, highly reproducible, and eliminates difficulties with electrode alignment. Using this approach (CD)-D-4 can be readily achieved in any microchip by simply adding extra 'electrode' channels to the microchip design. This design flexibility allows for straightforward optimization of electrode parameters. Here, we present the optimization of physical electrode parameters including orientation, length and distance from separation channel. The suitability of the optimized system for on-chip (CD)-D-4 detection was demonstrated through the excellent intra- and inter-day repeatability (< 4 %RSD) of electrophoretically separated lithium, sodium and potassium ions.
引用
收藏
页数:9
相关论文