Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells

被引:12
作者
Gambini, Elisa [1 ]
Martinelli, Ilenia [2 ]
Stadiotti, Ilaria [1 ]
Vinci, Maria Cristina [1 ]
Scopece, Alessandro [1 ]
Eramo, Luana [1 ]
Sommariva, Elena [1 ]
Resta, Jessica [1 ,2 ]
Benaouadi, Sabrina [2 ]
Cogliati, Elisa [3 ]
Paolin, Adolfo [3 ]
Parini, Angelo [2 ]
Pompilio, Giulio [1 ,4 ]
Savagner, Frederique [2 ]
机构
[1] IRCCS, Ctr Cardiol Monzino, Vasc Biol & Regenerat Med Unit, Via Carlo Parea 4, I-20138 Milan, Italy
[2] Univ Toulouse, Inst Natl Sante & Rech Med INSERM, Inst Metab & Cardiovasc Dis I2MC, F-31432 Toulouse, France
[3] Treviso Tissue Bank Fdn, Via Antonio Scarpa 9, I-31100 Treviso, Italy
[4] Univ Milan, Dipartimento Sci Clin & Comunita, Via Festa Perdono 7, I-20122 Milan, Italy
关键词
cardiac mesenchymal progenitor cells; metabolism; mitochondrial membrane potential; TMRM; cell fate; differentiation; STEM-CELLS; BONE-MARROW; ENERGY-METABOLISM; STROMAL CELLS; DIFFERENTIATION; REGENERATION; FATE; INVOLVEMENT; EXPRESSION; CARTILAGE;
D O I
10.3390/ijms21207467
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adult human cardiac mesenchymal progenitor cells (hCmPC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Even if the mechanisms have not yet been fully elucidated, the stem cell differentiation is guided by the mitochondrial metabolism; however, mitochondrial approaches to identify hCmPC with enhanced stemness and/or differentiation capability for cellular therapy are not established. Here we demonstrated that hCmPCs sorted for low and high mitochondrial membrane potential (using a lipophilic cationic dye tetramethylrhodamine methyl ester, TMRM), presented differences in energy metabolism from preferential glycolysis to oxidative rates. TMRM-high cells are highly efficient in terms of oxygen consumption rate, basal and maximal respiration, and spare respiratory capacity compared to TMRM-low cells. TMRM-high cells showed characteristics of pre-committed cells and were associated with higher in vitro differentiation capacity through endothelial, cardiac-like, and, to a lesser extent, adipogenic and chondro/osteogenic cell lineage, when compared with TMRM-low cells. Conversely, TMRM-low showed higher self-renewal potential. To conclude, we identified two hCmPC populations with different metabolic profile, stemness maturity, and differentiation potential. Our findings suggest that metabolic sorting can isolate cells with higher regenerative capacity and/or long-term survival. This metabolism-based strategy to select cells may be broadly applicable to therapies.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 61 条
[1]   c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration [J].
Aquila, Iolanda ;
Cianflone, Eleonora ;
Scalise, Mariangela ;
Marino, Fabiola ;
Mancuso, Teresa ;
Filardo, Andrea ;
Smith, Andrew J. ;
Cappetta, Donato ;
De Angelis, Antonella ;
Urbanek, Konrad ;
Isidori, Andrea M. ;
Torella, Michele ;
Agosti, Valter ;
Viglietto, Giuseppe ;
Nadal-Ginard, Bernardo ;
Ellison-Hughes, Georgina M. ;
Torella, Daniele .
CELL DEATH & DISEASE, 2019, 10 (6)
[2]   Metaboloepigenetics: The Emerging Network in Stem Cell Homeostasis Regulation [J].
Avitabile, Daniele ;
Magenta, Alessandra ;
Lauri, Andrea ;
Gambini, Elisa ;
Spaltro, Gabriella ;
Vinci, Maria Cristina .
CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (04) :352-369
[3]   Pluripotent stem cell derived cardiovascular progenitors - A developmental perspective [J].
Birket, Matthew J. ;
Mummery, Christine L. .
DEVELOPMENTAL BIOLOGY, 2015, 400 (02) :169-179
[4]   c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase expression and differentiation potential [J].
Blazquez-Martinez, A. ;
Chiesa, M. ;
Arnalich, F. ;
Fernandez-Delgado, J. ;
Nistal, M. ;
De Miguel, M. P. .
DIFFERENTIATION, 2014, 87 (3-4) :147-160
[5]   Mesenchymal stem cells as trophic mediators [J].
Caplan, Arnold I. ;
Dennis, James E. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 98 (05) :1076-1084
[6]   Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application [J].
Caplan, Henry ;
Olson, Scott D. ;
Kumar, Akshita ;
George, Mitchell ;
Prabhakara, Karthik S. ;
Wenzel, Pamela ;
Bedi, Supinder ;
Toledano-Furman, Naama E. ;
Triolo, Fabio ;
Kamhieh-Milz, Julian ;
Moll, Guido ;
Cox, Charles S., Jr. .
FRONTIERS IN IMMUNOLOGY, 2019, 10 :1645
[7]   The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration [J].
Cencioni, Chiara ;
Atlante, Sandra ;
Savoia, Matteo ;
Martelli, Fabio ;
Farsetti, Antonella ;
Capogrossi, Maurizio C. ;
Zeiher, Andreas M. ;
Gaetano, Carlo ;
Spallotta, Francesco .
PHARMACOLOGY & THERAPEUTICS, 2017, 171 :43-55
[8]   Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells [J].
Chen, Chien-Tsun ;
Shih, Yu-Ru V. ;
Kuo, Tom K. ;
Lee, Oscar K. ;
Wei, Yau-Huei .
STEM CELLS, 2008, 26 (04) :960-968
[9]   Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming [J].
Chen, Chien-Tsun ;
Hsu, Shu-Han ;
Wei, Yau-Huei .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2012, 1820 (05) :571-576
[10]   Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J].
Chen, HC ;
Detmer, SA ;
Ewald, AJ ;
Griffin, EE ;
Fraser, SE ;
Chan, DC .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :189-200