POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS

被引:96
作者
Bravo, Jhon J. [1 ]
Gomez, Carlos A. [2 ]
Luca, Florian [3 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
[3] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
关键词
generalized Fibonacci numbers; linear forms in logarithms; reduction method; GENERALIZED FIBONACCI; REPDIGITS;
D O I
10.18514/MMN.2016.1505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k >= 2, let (F-n((k)))(n) be the k-Fibonacci sequence which starts with 0, ..., 0, 1 ( k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we search for powers of 2 which are sums of two k-Fibonacci numbers. The main tools used in this work are lower bounds for linear forms in logarithms and a version of the Baker-Davenport reduction method in diophantine approximation. This paper continues and extends the previous work of [4] and [2].
引用
收藏
页码:85 / 100
页数:16
相关论文
共 21 条
[1]  
Alvarado S.D., 2011, P 14 INT C FIBONACCI, V20, P97
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]  
Bravo J., 2015, QUAEST MATH, P1, DOI [10,2989/16073606.2015/1070377, DOI 10.2989/16073606.2015/1070377]
[4]  
Bravo JJ, 2015, MONATSH MATH, V176, P31, DOI 10.1007/s00605-014-0622-6
[5]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[6]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[7]   ON THE PERIODS OF GENERALIZED FIBONACCI RECURRENCES [J].
BRENT, RP .
MATHEMATICS OF COMPUTATION, 1994, 63 (207) :389-401
[8]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[9]  
Cooper C., 2011, FIBONACCI QUART, V49, P158
[10]  
Dresden G. P., 2014, J INTEGER SEQUENCES