A new form of the Segal-Bargmann transform for Lie groups of compact type

被引:21
作者
Hall, BC [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1999年 / 51卷 / 04期
关键词
D O I
10.4153/CJM-1999-035-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I consider a two-parameter family B-s,B-t of unitary transforms mapping an L-2-space over a Lie group of compact type onto a holomorphic L-2-space over the complexified group. These were studied using infinite-dimensional analysis in joint work with B. Driver, but are treated here by finite-dimensional means. These transforms interpolate between two previously known transforms, and all should be thought of as generalizations of the classical Segal-Bargmann transform. I consider also the limiting cases s --> infinity and s --> t/2.
引用
收藏
页码:816 / 834
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]  
Baez J., 1992, INTRO ALGEBRAIC CONS
[4]  
Brocker T., 1985, REPRESENTATIONS COMP
[5]  
Driver BK, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P76
[6]   Yang-Mills theory and the Segal-Bargmann transform [J].
Driver, BK ;
Hall, BC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (02) :249-290
[7]   ON THE KAKUTANI-ITO-SEGAL-GROSS AND SEGAL-BARGMANN-HALL ISOMORPHISMS [J].
DRIVER, BK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :69-128
[8]   UNIQUENESS OF GROUND-STATES FOR SCHRODINGER-OPERATORS OVER LOOP-GROUPS [J].
GROSS, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :373-441
[9]  
GROSS L, 1993, STOCHASTIC PROCESSES, P117
[10]  
GROSS L, 1994, STOCHASTIC ANAL INFI, P99