APPROXIMATION BY POSITIVE DEFINITE FUNCTIONS ON COMPACT GROUPS

被引:7
作者
Erb, Wolfgang [2 ]
Filbir, Frank [1 ]
机构
[1] GSF Res Ctr, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-8046 Garching, Germany
关键词
Positive definite functions; Rotation group; Scattered data approximation;
D O I
10.1080/01630560802484310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider approximation methods defined by translates of a positive definite function on a compact group. A characterization of the native space generated by a positive definite function on a compact group is presented. Starting from Bochner's theorem, we construct examples of well-localized positive definite central functions on the rotation group SO(3). Finally, the stability of the interpolation problem and the error analysis for the given examples are studied in detail.
引用
收藏
页码:1082 / 1107
页数:26
相关论文
共 18 条
[1]   Strictly positive definite functions on a compact group [J].
Allali, M ;
Przebinda, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (05) :1459-1462
[2]   Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration [J].
Beatson, RK ;
Cherrie, JB ;
Mouat, CT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) :253-270
[3]   Radial basis functions and corresponding zonal series expansions on the sphere [J].
Castell, WZ ;
Filbir, F .
JOURNAL OF APPROXIMATION THEORY, 2005, 134 (01) :65-79
[4]  
Chirikjian G. S., 2000, ENG APPL NONCOMMUTAT
[5]   Stability results for approximation by positive definite functions on SO(3) [J].
Filbir, Frank ;
Schmid, Dominik .
JOURNAL OF APPROXIMATION THEORY, 2008, 153 (02) :170-183
[6]  
Gel'fand I M, 1963, REPRESENTATIONS ROTA
[7]  
Gutzmer T., 1996, RESULTS MATH, V29, P69
[8]  
Hewitt E., 1970, ABSTRACT HARMONIC AN, V2
[9]   Error estimates for scattered data interpolation on spheres [J].
Jetter, K ;
Stöckler, J ;
Ward, JD .
MATHEMATICS OF COMPUTATION, 1999, 68 (226) :733-747
[10]   GENERALIZED HERMITE INTERPOLATION AND POSITIVE-DEFINITE KERNELS ON A RIEMANNIAN MANIFOLD [J].
NARCOWICH, FJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 190 (01) :165-193