On the hyper order of solutions of a class of higher order linear differential equations

被引:0
作者
Belaidi, Benharrat [1 ]
Abbas, Said [1 ]
机构
[1] Univ Mostaganem, Dept Math, Lab Pure & Appl Math, Mostaganem, Algeria
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2008年 / 16卷 / 02期
关键词
Linear differential equations; Entire solutions; Hyper order;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the order and the hyper order of entire solutions of the higher order linear differential equation f((k)) + A(k-1) (z) e(Pk-1(z)) f((k-1)) +...+ A(1) (z) e(P1(z)) f' + A(0) (z) e(P0(z)) f = 0 (k >= 2) where P-j (z) (j = 0,..., k - 1) are nonconstant polynomials such that deg P-j = n (j = 0,..., k - 1) and A(j) (z) (not equivalent to 0) (j = 0,..., k - 1) are entire functions with rho (A(j)) < n (j = 0,..., k - 1). Under some conditions, we prove that every solution f (z) not equivalent to 0 of the above equation is of infinite order and rho(2) (f) = n.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 13 条
[1]  
[Anonymous], T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1988-0920167-5
[2]  
BELAIDI B, 2007, J INEQUAL PURE APPL, V8, P1
[3]  
Chen Z.X., 2004, SE ASIAN B MATH, V27, P995
[4]   On the Hyper-Order of solutions of some second-order linear differential equations [J].
Chen, ZX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (01) :79-88
[5]   On the growth of solutions of a class of higher order differential equations [J].
Chen, ZX ;
Shon, KH .
ACTA MATHEMATICA SCIENTIA, 2004, 24 (01) :52-60
[6]   FINITE-ORDER SOLUTIONS OF NONHOMOGENEOUS LINEAR-DIFFERENTIAL EQUATIONS [J].
GUNDERSEN, GG ;
STEINBART, EM .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1992, 17 (02) :327-341
[7]   ESTIMATES FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION, PLUS SIMILAR ESTIMATES [J].
GUNDERSEN, GG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :88-104
[8]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[9]  
Kwon K, 1996, Kodai Math. J., V19, P378, DOI DOI 10.2996/KMJ/1138043654
[10]  
LAINE L, 2004, ELECT J DIFFER EQNS, P1