Norm inequalities for commutators of self-adjoint operators

被引:16
作者
Kittaneh, Fuad [1 ]
机构
[1] Univ Jordan, Dept Math, Amman, Jordan
关键词
commutator; normal operator; self-adjoint operator; positive operator; unitarily invariant norm; norm inequality;
D O I
10.1007/s00020-008-1605-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B, and X be bounded linear operators on a complex separable Hilbert space. It is shown that if A and B are self- adjoint with a(1) <= A <= a(2) and b(1) <= B <= b2 for some real numbers a(1), a(2), b(1), and b(2), then for every unitarily invariant norm [GRAPHICS] [GRAPHICS] <= max(a(2) - b(1), b(2) - a(1)) [GRAPHICS] If, in addition, X is positive, then [GRAPHICS] <= 1/2 (a(2) - a(1)) [GRAPHICS] These norm inequalities generalize recent related inequalities due to Kittaneh, Bhatia-Kittaneh, and Wang-Du.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 10 条
[1]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[2]  
Bhatia R., 2013, MATRIX ANAL
[3]  
Bhatia R, 2008, OPER MATRICES, V2, P143
[4]  
GOHBERG I. C., 1969, Trans. Mathem. Monographs, V18
[5]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[6]  
KITTANEH F, 2008, INTERNAT SER NUMER M, V157
[7]   Norm inequalities for commutators of positive operators and applications [J].
Kittaneh, Fuad .
MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (04) :845-849
[8]   Inequalities for commutators of positive operators [J].
Kittaneh, Fuad .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :132-143
[9]   Norms of commutators of self-adjoint operators [J].
Wang, Yue-Qing ;
Du, Hong-Ke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :747-751
[10]   On some matrix inequalities [J].
Zhan, XZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 376 :299-303