Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation

被引:257
作者
Li, Jian [1 ]
Yan, Long [1 ]
Li, Haoyu [1 ]
Li, Weijun [1 ]
Zha, Fei [1 ]
Lei, Ziqiang [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Gansu Polymer Mat, Key Lab Ecoenvironm Related Polymer Mat,Minist Ed, Lanzhou 730070, Peoples R China
关键词
OIL-WATER SEPARATION; SUPERHYDROPHOBIC SURFACES; MEMBRANES; FABRICATION; ARRAY; FILM; WETTABILITY; REMOVAL; ROBUST;
D O I
10.1039/c5ta02870a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil/water separation has recently become a global challenging task due to frequent oil spill accidents and increasing industrial oily waste water. Here, we demonstrate for the first time underwater superoleophobic palygorskite coated meshes, which were fabricated by spraying palygorskite and polyurethane mixtures on copper mesh substrates. The underwater superoleophobic meshes were then used to study gravity driven oil/water separation for a series of oil/water mixtures, where only the water from the oil/water mixture is allowed to permeate through the mesh. A separation efficiency of up to 99.6% could be achieved through the coated mesh for the kerosene-water mixture. In addition, the palygorskite coated mesh still maintained a high separation efficiency of over 99.0% and stable recyclability after 50 separation cycles with the surface morphology of the palygorskite coated mesh nearly unchanged. Furthermore, the palygorskite coated meshes exhibit excellent environmental stability under a series of harsh conditions, which are used for the separation of mixtures of oil and various corrosive and active aqueous solutions, including strong acidic, alkaline, or salt aqueous solutions, even hot water. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil/water separation facility for oil and various corrosive and active aqueous mixtures.
引用
收藏
页码:14696 / 14702
页数:7
相关论文
共 50 条
  • [21] Bioinspired Underwater Superoleophobic Membrane Based on a Graphene Oxide Coated Wire Mesh for Efficient Oil/Water Separation
    Liu, Yu-Qing
    Zhang, Yong-Lai
    Fu, Xiu-Yan
    Sun, Hong-Bo
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20930 - 20936
  • [22] Oil/water separation through dual-channeled superhydrophobic/underwater superoleophobic meshes toward continuous processes
    Chen, Cihang
    Wu, Ziyu
    Wang, Yufu
    Wei, Hong
    Li, Baiyu
    SEPARATION SCIENCE AND TECHNOLOGY, 2024, 59 (6-9) : 1068 - 1082
  • [23] A self-cleaning underwater superoleophobic mesh for oil-water separation
    Zhang, Lianbin
    Zhong, Yujiang
    Cha, Dongkyu
    Wang, Peng
    SCIENTIFIC REPORTS, 2013, 3
  • [24] Fabrication of superhydrophilic and underwater superoleophobic quartz sand filter for oil/water separation
    Wei Bigui
    Yue Cheng
    Liu Jianlin
    Wang Gang
    Dai Liang
    Song Xiaosan
    Wu Fuping
    Li Hua
    Chang Qing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 229
  • [25] Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation
    Zeng, Jiawen
    Guo, Zhiguang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 444 : 283 - 288
  • [26] Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation
    Ahmed, Farah Ejaz
    Lalia, Boor Singh
    Hilal, Nidal
    Hashaikeh, Raed
    DESALINATION, 2014, 344 : 48 - 54
  • [27] Superhydrophilic and underwater superoleophobic cement-coated mesh for oil/water separation by gravity
    Gou, Xiaodan
    Zhang, Yanzong
    Long, Lulu
    Liu, Yan
    Tian, Dong
    Shen, Fei
    Yang, Gang
    Zhang, Xiaohong
    Wang, Lilin
    Deng, Shihuai
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 605
  • [28] Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiber-Based Meshes from Waste Glass for Multifunctional Oil/Water Separation
    Ma, Qinglang
    Cheng, Hongfei
    Yu, Yifu
    Huang, Ying
    Lu, Qipeng
    Han, Shikui
    Chen, Junze
    Wang, Rong
    Fane, Anthony G.
    Zhang, Hua
    SMALL, 2017, 13 (19)
  • [29] Micro/Nanoscale Structured Superhydrophilic and Underwater Superoleophobic Hybrid-Coated Mesh for High-Efficiency Oil/Water Separation
    Yuan, Teng
    Yin, Jian
    Liu, Yingling
    Tu, Weiping
    Yang, Zhuohong
    POLYMERS, 2020, 12 (06)
  • [30] Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization
    Deng, Wei
    Li, Chao
    Pan, Fuping
    Li, Ying
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 222 (35-44) : 35 - 44