The finite edge-primitive pentavalent graphs

被引:16
作者
Guo, Song-Tao [1 ]
Feng, Yan-Quan [1 ]
Li, Cai Heng [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Edge-primitive graph; Symmetric graph; s-Transitive graph; TRANSITIVE GRAPHS; SYMMETRIC GRAPHS;
D O I
10.1007/s10801-012-0412-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is edge-primitive if its automorphism group acts primitively on edges. Weiss (in J. Comb. Theory Ser. B 15, 269-288, 1973) determined edge-primitive cubic graphs. In this paper, we classify edge-primitive pentavalent graphs. The same classification of those of valency 4 is also done.
引用
收藏
页码:491 / 497
页数:7
相关论文
共 12 条
[1]  
Conway H., 1985, ATLAS FINITE GROUPS
[2]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[3]   On finite edge-primitive and edge-quasiprimitive graphs [J].
Giudici, Michael ;
Li, Cai Heng .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) :275-298
[4]  
Guo S. T., J COMB THEOR B UNPUB
[5]   The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs [J].
Li, Cai Heng ;
Zhang, Hua .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 :441-472
[6]   The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4 [J].
Li, CH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3511-3529
[7]   VERTEX-TRANSITIVE GRAPHS - SYMMETRIC GRAPHS OF PRIME VALENCY [J].
LORIMER, P .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :55-68
[8]  
Sabidussi G., 1968, MONATSH MATH, V68, P426
[10]  
WEISS R, 1986, T AM MATH SOC, V298, P621