Stability analysis for inverse heat conduction problems

被引:0
作者
Ling, Xianwu [1 ]
Atluri, S. N. [1 ]
机构
[1] Univ Calif Irvine, Ctr Aerosp Res & Educ, Irvine, CA 92612 USA
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2006年 / 13卷 / 03期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, two matrix algebraic tools are provided for studying the solution-stabilities of inverse heat conduction problems. The propagations of the computed temperature errors, as caused by a noise in temperature measurement, are presented. The spectral norm analysis reflects the effect of the computational time steps, the sensor locations and the number of future temperatures on the computed error levels. The Frobenius norm analysis manifests the dynamic propagations of the computed errors. As an application of the norm analysis, we, propose a method for the best positioning of the thermocouples.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
[31]   Physical regularization for inverse problems of stationary heat conduction [J].
Cialkowski, M.J. ;
Frackowiak, A. ;
Grysa, K. .
Journal of Inverse and Ill-Posed Problems, 2007, 15 (04) :347-364
[32]   A global time treatment for inverse heat conduction problems [J].
Frankel, JI ;
Keyhani, M .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (04) :673-683
[33]   BEM APPROACH TO INVERSE HEAT-CONDUCTION PROBLEMS [J].
KURPISZ, K ;
NOWAK, AJ .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1992, 10 (04) :291-297
[34]   Analytical Conditions for Optimality in Inverse Problems of Heat Conduction [J].
Diligenskaya, A. N. ;
Rapoport, E. Ya .
HIGH TEMPERATURE, 2021, 59 (2-6) :292-301
[35]   Physical regularization for inverse problems of stationary heat conduction [J].
Poznań University of Technology, 5 Maria Sklodowska-Curie Sq., 60-965 Poznań, Poland ;
不详 .
J Inverse Ill Posed Probl, 2007, 4 (347-364) :347-364
[36]   Global time treatment for inverse heat conduction problems [J].
Frankel, J.I. ;
Keyhani, M. .
Journal of Heat Transfer, 1997, 119 (04) :673-683
[37]   A hybrid regularization method for inverse heat conduction problems [J].
Ling, XW ;
Cherukuri, HP ;
Horstemeyer, MF .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (13) :2246-2264
[38]   Direct and inverse solutions of hyperbolic heat conduction problems [J].
Yang, CY .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2005, 19 (02) :217-225
[39]   A CONVOLUTION METHOD FOR INVERSE HEAT-CONDUCTION PROBLEMS [J].
GILLIAM, DS ;
MAIR, BA ;
MARTIN, CF .
MATHEMATICAL SYSTEMS THEORY, 1988, 21 (01) :49-60
[40]   Hierarchical Bayesian models for inverse problems in heat conduction [J].
Wang, JB ;
Zabaras, N .
INVERSE PROBLEMS, 2005, 21 (01) :183-206