Primary cilia and autophagic dysfunction in Huntington's disease

被引:30
作者
Kaliszewski, M. [1 ]
Knott, A. B. [1 ]
Bossy-Wetzel, E. [1 ]
机构
[1] Univ Cent Florida, Burnett Sch Biomed Sci, Coll Med, Orlando, FL 32827 USA
关键词
PRION-LIKE TRANSMISSION; MUTANT HUNTINGTIN; IN-VIVO; INTRAFLAGELLAR TRANSPORT; CASPASE CLEAVAGE; REDUCES TOXICITY; ER STRESS; WILD-TYPE; PROTEIN; CELLS;
D O I
10.1038/cdd.2015.80
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field.
引用
收藏
页码:1413 / 1424
页数:12
相关论文
共 150 条
[1]   A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity [J].
Ahmed, Zeshan ;
Cooper, Jane ;
Murray, Tracey K. ;
Garn, Katya ;
McNaughton, Emily ;
Clarke, Hannah ;
Parhizkar, Samira ;
Ward, Mark A. ;
Cavallini, Annalisa ;
Jackson, Samuel ;
Bose, Suchira ;
Clavaguera, Florence ;
Tolnay, Markus ;
Lavenir, Isabelle ;
Goedert, Michel ;
Hutton, Michael L. ;
O'Neill, Michael J. .
ACTA NEUROPATHOLOGICA, 2014, 127 (05) :667-683
[2]   HEAT REPEATS IN THE HUNTINGTONS-DISEASE PROTEIN [J].
ANDRADE, MA ;
BORK, P .
NATURE GENETICS, 1995, 11 (02) :115-116
[3]   THE RELATIONSHIP BETWEEN TRINUCLEOTIDE (CAG) REPEAT LENGTH AND CLINICAL-FEATURES OF HUNTINGTONS-DISEASE [J].
ANDREW, SE ;
GOLDBERG, YP ;
KREMER, B ;
TELENIUS, H ;
THEILMANN, J ;
ADAM, S ;
STARR, E ;
SQUITIERI, F ;
LIN, BY ;
KALCHMAN, MA ;
GRAHAM, RK ;
HAYDEN, MR .
NATURE GENETICS, 1993, 4 (04) :398-403
[4]   Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death [J].
Arrasate, M ;
Mitra, S ;
Schweitzer, ES ;
Segal, MR ;
Finkbeiner, S .
NATURE, 2004, 431 (7010) :805-810
[5]  
Atwal RS, 2011, NAT CHEM BIOL, V7, P453, DOI [10.1038/NCHEMBIO.582, 10.1038/nchembio.582]
[6]   Ciliary Secretion: Switching the Cellular Antenna to 'Transmit' [J].
Avasthi, Prachee ;
Marshall, Wallace .
CURRENT BIOLOGY, 2013, 23 (11) :R471-R473
[7]   Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum [J].
Axe, Elizabeth L. ;
Walker, Simon A. ;
Manifava, Maria ;
Chandra, Priya ;
Roderick, H. Llewelyn ;
Habermann, Anja ;
Griffiths, Gareth ;
Ktistakis, Nicholas T. .
JOURNAL OF CELL BIOLOGY, 2008, 182 (04) :685-701
[8]   Intraflagellar transport: it's not just for cilia anymore [J].
Baldari, Cosima T. ;
Rosenbaum, Joel .
CURRENT OPINION IN CELL BIOLOGY, 2010, 22 (01) :75-80
[9]   Leptin and its receptors are present in the rat olfactory mucosa and modulated by the nutritional status [J].
Baly, Christine ;
Aioun, Josiane ;
Badonnel, Karine ;
Lacroix, Marie-Christine ;
Durieux, Didier ;
Schlegel, Claire ;
Salesse, Roland ;
Caillol, Monique .
BRAIN RESEARCH, 2007, 1129 (01) :130-141
[10]   Huntingtin Modulates Transcription, Occupies Gene Promoters In Vivo, and Binds Directly to DNA in a Polyglutamine-Dependent Manner [J].
Benn, Caroline L. ;
Sun, Tingting ;
Sadri-Vakili, Ghazaleh ;
McFarland, Karen N. ;
DiRocco, Derek P. ;
Yohrling, George J. ;
Clark, Timothy W. ;
Bouzou, Berengere ;
Cha, Jang-Ho J. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (42) :10720-10733