Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)

被引:235
|
作者
Adolf, Verena Isabelle [1 ]
Jacobsen, Sven-Erik [1 ]
Shabala, Sergey [2 ]
机构
[1] Univ Copenhagen, Fac Life Sci, DK-2630 Taastrup, Denmark
[2] Univ Tasmania, Sch Agr Sci, Hobart, Tas 7001, Australia
关键词
Soil salinity; NaCl; Halophyte; Tolerance mechanisms; Oxidative stress; Osmotic adjustment; SALINITY TOLERANCE; PLASMA-MEMBRANE; SEED-GERMINATION; NA+ TRANSPORT; CHLOROPHYLL FLUORESCENCE; ARABIDOPSIS-THALIANA; OSMOTIC COMPONENTS; PLANT-RESPONSES; IONIC RELATIONS; K+ HOMEOSTASIS;
D O I
10.1016/j.envexpbot.2012.07.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of diminishing fresh water resources and increasing soil salinisation it is relevant to evaluate the potential of halophytic plant species to be cultivated in arid and semi-arid regions, where the productivity of most crop plants is markedly affected. Quinoa is a facultative halophytic plant species with the most tolerant varieties being able to cope with salinity levels as high as those present in sea water. This characteristic has aroused the interest in the species, and a number of studies have been performed with the aim of elucidating the mechanisms used by quinoa in order to cope with high salt levels in the soil at various stages of plant development. In quinoa key traits seem to be an efficient control of Na+ sequestration in leaf vacuoles, xylem Na+ loading, higher ROS tolerance, better K+ retention, and an efficient control over stomatal development and aperture. The purpose of this review is to give an overview on the existing knowledge of the salt tolerance of quinoa, to discuss the potential of quinoa for cultivation in salt-affected regions and as a basis for further research in the field of plant salt tolerance. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 50 条
  • [1] Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Jacobsen, S.-E.
    Monteros, C.
    Corcuera, L. J.
    Bravo, L. A.
    Christiansen, J. L.
    Mujica, A.
    EUROPEAN JOURNAL OF AGRONOMY, 2007, 26 (04) : 471 - 475
  • [2] Ecdysteroids of Quinoa seeds (Chenopodium quinoa Willd.)
    Zhu, N
    Kikuzaki, H
    Vastano, BC
    Nakatani, N
    Karwe, MV
    Rosen, RT
    Ho, CT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (05) : 2576 - 2578
  • [3] The worldwide potential for quinoa (Chenopodium quinoa Willd.)
    Jacobsen, SE
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 167 - 177
  • [4] Glycaemic properties of quinoa (Chenopodium quinoa Willd.).
    Zevallos, V.
    Grimble, G.
    Herencia, L. I.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2006, 65 : 60A - 60A
  • [5] Determination of Germination Characteristics of Quinoa (Chenopodium quinoa Willd.) in Different Salt Concentrations
    Akcay, Emre
    Tan, Mustafa
    ALINTERI JOURNAL OF AGRICULTURE SCIENCES, 2018, 33 (01): : 85 - 91
  • [6] Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds
    Konishi, Y
    Hirano, S
    Tsuboi, H
    Wada, M
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2004, 68 (01) : 231 - 234
  • [7] Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments
    Snowball, Richard
    Dhammu, Harmohinder S.
    D'Antuono, Mario Francesco
    Troldahl, David
    Biggs, Ian
    Thompson, Callen
    Warmington, Mark
    Pearce, Amanda
    Sharma, Darshan L.
    AGRONOMY-BASEL, 2022, 12 (09):
  • [8] Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.)
    Navruz-Varli, Semra
    Sanlier, Nevin
    JOURNAL OF CEREAL SCIENCE, 2016, 69 : 371 - 376
  • [9] Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)
    Vilcacundo, Ruben
    Hernandez-Ledesma, Blanca
    CURRENT OPINION IN FOOD SCIENCE, 2017, 14 : 1 - 6
  • [10] Evaluation of quinoa (Chenopodium quinoa Willd.) in coeliac disease
    Zevallos, V.
    Ciclitira, P. J.
    Suligoj, T.
    Herencia, L. I.
    Ellis, H. J.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2007, 66 : 69A - 69A