An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping

被引:14
作者
Wang, Tong [1 ,2 ]
Tang, Ronglin [1 ,2 ]
Li, Zhao-Liang [3 ,4 ]
Jiang, Yazhen [2 ,3 ]
Liu, Meng [1 ,2 ]
Niu, Lu [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] CNRS, ICube, UdS, 300 Blvd Sebastien Brant,CS10413, F-67412 Illkirch Graffenstaden, France
[4] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Agr Remote Sensing, Minist Agr, Beijing 100081, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
evapotranspiration; fusion; multi-source satellite data; Landsat; 8; MODIS; SADFAET; LAND-SURFACE TEMPERATURE; MODIS; RESOLUTION; MODEL; FIELD; SOIL; GEOSTATIONARY; REFLECTANCE; MODULATION; MANAGEMENT;
D O I
10.3390/rs11070761
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is critical for water resource management and the quantification of irrigation water efficiency at both global and local scales. However, available remote sensing satellites cannot generally provide ET data at both high spatial and temporal resolutions. Data fusion methods have been widely applied to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied to ET are initially used to integrate land surface reflectance, the spectral index and land surface temperature, and few studies completely consider the influencing factor of ET. To overcome this limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface temperature (the corresponding temperature to decide soil moisture), importing the weights of surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing data) and modifying the spectral similarity (the differences in spectral characteristics of different spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin from April to October 2015. The validation results, based on ground-based ET measurements, indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent error: -5%), with a root mean square error of 45.7 W/m(2), whereas the ESTARFM performed slightly worse, with a root mean square error of 50.6 W/m(2). The more physically explainable SADFAET could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.
引用
收藏
页数:21
相关论文
共 52 条
[1]   Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study [J].
Al Zayed, Islam Sabry ;
Elagib, Nadir Ahmed ;
Ribbe, Lars ;
Heinrich, Juergen .
AGRICULTURAL WATER MANAGEMENT, 2016, 177 :66-76
[2]  
Allen R., 2010, MAPPING EVAPOTRANSPI, V2, P248
[3]  
Allen R.G., 2008, P 17 WT PEC MEM REM
[4]   Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery [J].
Anderson, M. C. ;
Kustas, W. P. ;
Norman, J. M. ;
Hain, C. R. ;
Mecikalski, J. R. ;
Schultz, L. ;
Gonzalez-Dugo, M. P. ;
Cammalleri, C. ;
d'Urso, G. ;
Pimstein, A. ;
Gao, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) :223-239
[5]   Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign [J].
Anderson, Martha C. ;
Kustas, William P. ;
Alfieri, Joseph G. ;
Gao, Feng ;
Hain, Christopher ;
Prueger, John H. ;
Evett, Steven ;
Colaizzi, Paul ;
Howell, Terry ;
Chavez, Jose L. .
ADVANCES IN WATER RESOURCES, 2012, 50 :162-177
[6]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[7]   Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin [J].
Bai, Liangliang ;
Cai, Jiabing ;
Liu, Yu ;
Chen, He ;
Zhang, Baozhong ;
Huang, Lingxu .
AGRICULTURAL WATER MANAGEMENT, 2017, 188 :1-11
[8]   Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm [J].
Bai, Yang ;
Wong, Man Sing ;
Shi, Wen-Zhong ;
Wu, Li-Xin ;
Qin, Kai .
REMOTE SENSING, 2015, 7 (04) :4424-4441
[9]   SEBAL model with remotely sensed data to improve water-resources management under actual field conditions [J].
Bastiaanssen, WGM ;
Noordman, EJM ;
Pelgrum, H ;
Davids, G ;
Thoreson, BP ;
Allen, RG .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2005, 131 (01) :85-93
[10]   A simple Landsat-MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution [J].
Bhattarai, Nishan ;
Quackenbush, Lindi J. ;
Dougherty, Mark ;
Marzen, Luke J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (01) :115-143