HARMONIC FUNCTIONS AND THE SPECTRUM OF THE LAPLACIAN ON THE SIERPINSKI CARPET

被引:11
作者
Begue, Matthew [1 ]
Kalloniatis, Tristan [2 ]
Strichartz, Robert S. [3 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Cambridge, Fac Math, Cambridge CB3 0WA, England
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Sierpinski Carpet; Fractal; Laplacian; Spectrum; Poisson Kernel; Heat Kernel; Dirichlet Kernel; Covering Spaces; Fractafolds; Normal Derivatives; RESISTANCE; FRACTALS;
D O I
10.1142/S0218348X13500023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kusuoka and Zhou have defined the Laplacian on the Sierpinski carpet using average values of functions on small cells and the graph structure of cell adjacency. We have implemented an algorithm that uses their method to approximate solutions to boundary value problems. As a result we have a wealth of data concerning harmonic functions with prescribed boundary values, and eigenfunctions of the Laplacian with either Neumann or Dirichlet boundary conditions. We will present some of this data and discuss some ideas for defining normal derivatives on the boundary of the carpet.
引用
收藏
页数:32
相关论文
共 16 条
[1]  
[Anonymous], 2001, ANAL FRACTALS
[2]   LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS II [J].
Aougab, Tarik ;
Dong, Stella Chuyue ;
Strichartz, Robert S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) :1-58
[3]   Uniqueness of Brownian motion on Sierpinski carpets [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi ;
Teplyaev, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) :655-701
[4]   COUPLING AND HARNACK INEQUALITIES FOR SIERPINSKI CARPETS [J].
BARLOW, MT ;
BASS, RF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :208-212
[5]   ON THE RESISTANCE OF THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882) :345-360
[6]  
Begue M., 2010, SIERPINSKI CARPET DA
[7]   Outer Approximation of the Spectrum of a Fractal Laplacian [J].
Berry, Tyrus ;
Heilman, Steven M. ;
Strichartz, Robert S. .
EXPERIMENTAL MATHEMATICS, 2009, 18 (04) :449-480
[8]   ANALYSIS OF THE LAPLACIAN AND SPECTRAL OPERATORS ON THE VICSEK SET [J].
Constantin, Sarah ;
Strichartz, Robert S. ;
Wheeler, Miles .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) :1-44
[9]  
Fukushima M., 1992, POTENTIAL ANAL, V1, P1, DOI DOI 10.1007/BF00249784
[10]   HOMOTOPIES OF EIGENFUNCTIONS AND THE SPECTRUM OF THE LAPLACIAN ON THE SIERPINSKI CARPET [J].
Heilman, Steven M. ;
Strichartz, Robert S. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (01) :1-34