TWO-WEIGHT INEQUALITIES FOR HARDY OPERATOR AND COMMUTATORS

被引:4
作者
Li, Wenming [1 ]
Zhang, Tingting [1 ]
Xue, Limei [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
[2] Shijiazhuang Univ Econ, Sch Math & Sci, Shijiazhuang 050031, Hebei, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2015年 / 9卷 / 03期
关键词
Hardy operator; Calderon operator; commutator; two-weight inequality; maximal function;
D O I
10.7153/jmi-09-55
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the maximal operator N related to the Hardy operator P and its adjoint Q, we give the characterizations for weights (u, v) such that N is bounded from L-p( v) to L-p,L-infinity( u) and from L-p( v) to L-p( u) respectively. We also obtain some A(p) type conditions which are sufficient for the two-weight inequalities for the Hardy operator P, the adjoint operator Q and the commutators of these operators with CMO functions.
引用
收藏
页码:653 / 664
页数:12
相关论文
共 15 条
[1]   Weighted bilinear Hardy inequalities [J].
Aguilar Canestro, M. Isabel ;
Ortega Salvador, Pedro ;
Ramirez Torreblanca, C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) :320-334
[2]  
[Anonymous], 1985, Springer Series in Soviet Mathematics, DOI DOI 10.1007/978-3-662-09922-3
[3]  
Bastero J, 2001, MEM AM MATH SOC, V154, pV
[4]  
CRUZURIBE D, 2000, GEORGIAN MATH J, V7, P33, DOI DOI 10.1515/GMJ.2000.33
[5]   Calderon Weights as Muckenhoupt Weights [J].
Duoandikoetxea, Javier ;
Martin-Reyes, Francisco J. ;
Ombrosi, Sheldy .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) :891-910
[6]  
García-Cuerva J, 2001, INDIANA U MATH J, V50, P1241
[7]  
GARCIACUERVA J, 1985, N HOLLAND MATH STUD, V116
[8]  
Hardy G.H., 1959, INEQUALITIES
[9]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[10]  
Hardy GH., 1927, Messenger Math, V57, P12