Characterization of blowout bifurcation by unstable periodic orbits

被引:31
作者
Nagai, Y
Lai, YC
机构
[1] Department of Physics and Astronomy, Kansas Institute for Theoretical and Computational Science
关键词
D O I
10.1103/PhysRevE.55.R1251
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Blowout bifurcation in chaotic dynamical systems occurs when a chaotic attractor, lying in some invariant subspace, becomes transversely unstable. We establish quantitative characterization of the blowout bifurcation by unstable periodic orbits embedded in the chaotic attractor. We argue that the bifurcation is mediated by changes in the transverse stability of an infinite number of unstable periodic orbits. There are two distinct groups of periodic orbits: one transversely stable and another transversely unstable. The bifurcation occurs when some properly weighted transverse eigenvalues of these two groups are balanced.
引用
收藏
页码:R1251 / R1254
页数:4
相关论文
共 40 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[4]  
ASHWIN P, 1996, UNPUB TECHNICAL REPO
[5]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[6]   SCALING OF PERIODIC-ORBITS IN 2-DIMENSIONAL CHAOTIC SYSTEMS [J].
AUERBACH, D .
PHYSICAL REVIEW A, 1990, 41 (12) :6692-6701
[7]   SCALING STRUCTURE OF STRANGE ATTRACTORS [J].
AUERBACH, D ;
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 37 (06) :2234-2236
[8]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[9]   UNSTABLE PERIODIC-ORBITS AND THE SYMBOLIC DYNAMICS OF THE COMPLEX HENON MAP [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW A, 1990, 42 (08) :4639-4646
[10]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826