Biotic degradation of poly(DL-lactide) based nanocomposites

被引:27
作者
Fukushima, K. [3 ]
Gimenez, E. [1 ]
Cabedo, L. [1 ]
Lagaron, J. M. [2 ]
Feijoo, J. L. [3 ]
机构
[1] Univ Jaume 1, Dept Technol, Castellon de La Plana 12071, Spain
[2] CSIC, Inst Agrochem & Technol, Packaging Lab, Burjassot 46100, Spain
[3] Univ Simon Bolivar, Dept Mat Sci, Grp Polimeros USB, Caracas 89000, Venezuela
关键词
PLA; Nanocomposites; Organic modified clays; Kaolinite; Biodegradation; L-LACTIDE COPOLYMERS; ENZYMATIC DEGRADATION; POLY(LACTIC ACID); SILICATE NANOCOMPOSITES; HYDROLYTIC DEGRADATION; ALIPHATIC POLYESTERS; POLY(L-LACTIDE); BIODEGRADABILITY; POLYLACTIDE; BLENDS;
D O I
10.1016/j.polymdegradstab.2012.05.029
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Amorphous PLA nanocomposites based on organic modified kaolinite (KAO) and montmorillonite (MONT) at 4 wt.% were prepared by melt blending and then biodegraded in compost. All materials showed effective degradation in this medium, according to visual observations, DSC and FTIR analysis. The addition of nanoclays was found to increase the PLA degradation rate, especially for kaolinite, due to the presence of hydroxyl groups belonging to the silicate layers of these clays. Addition of MONT to PLA also has a catalytic effect on polymer degradation in compost, but only in the last stages of degradation. In the early stages, MONT tends to delay the degradation of PIA probably due to its higher dispersion level into the polymer matrix as compared to KAO, creating a barrier effect of MONT layers towards water hydrolysis on PLA ester groups. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1278 / 1284
页数:7
相关论文
共 44 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]  
Cabedo L, 2006, MACROMOL SYMP, V233, P191, DOI [10.1002/masy.200690017, 10.1002/masy.200650124]
[3]   Development of EVOH-kaolinite nanocomposites [J].
Cabedo, L ;
Giménez, E ;
Lagaron, JM ;
Gavara, R ;
Saura, JJ .
POLYMER, 2004, 45 (15) :5233-5238
[4]  
Cabedo LS, 2004, REV PLASTICOS MODERN, V89, P177
[5]   Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability [J].
Chang, JH ;
An, YU ;
Sur, GS .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (01) :94-103
[6]  
Drumright RE, 2000, ADV MATER, V12, P1841, DOI 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO
[7]  
2-E
[8]   Development of amorphous PLA-montmorillonite nanocomposites [J].
Feijoo, J ;
Cabedo, L ;
Giménez, E ;
Lagaron, JM ;
Saura, JJ .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (07) :1785-1788
[9]   Biodegradation trend of poly(ε-caprolactone) and nanocomposites [J].
Fukushima, K. ;
Abbate, C. ;
Tabuani, D. ;
Gennari, M. ;
Rizzarelli, P. ;
Camino, G. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (04) :566-574
[10]   Biodegradation of poly(lactic acid) and its nanocomposites [J].
Fukushima, K. ;
Abbate, C. ;
Tabuani, D. ;
Gennari, M. ;
Camino, G. .
POLYMER DEGRADATION AND STABILITY, 2009, 94 (10) :1646-1655