Periodicity of identifying codes in strips

被引:2
作者
Jiang, Minghui [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
关键词
Identifying code; Minimum cycle mean; Graph algorithms; VERTICES;
D O I
10.1016/j.ipl.2018.03.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An identifying code in a graph is a subset of vertices having a nonempty and distinct intersection with the closed neighborhood of every vertex. We prove that the infimum density of any identifying code in S-k (an infinite strip of k rows in the square grid) can always be achieved by a periodic identifying code with pattern length at most 2(4k). Assisted by a compute program implementing Karp's algorithm for minimum cycle mean, we find a periodic identifying code in S-4 with the minimum density 11/28, and a periodic identifying code in S-5 with the minimum density 19/50. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 10 条
[1]  
Bouznif M., 2012, THESIS U GRENOBLE
[2]  
Bouznif M., 2016, RR8845 INRIA SOPH AN
[3]  
Bouznif M., 2011, PROGR BORD WORKSH ID
[4]  
Cohen G., 1999, ELECTRON J COMB, V6, pR19
[5]  
Cormen T. H., 2009, Introduction to Algorithms, V3rd
[6]   Identifying codes in some subgraphs of the square lattice [J].
Daniel, M ;
Gravier, S ;
Moncel, J .
THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) :411-421
[7]   Exact minimum density of codes identifying vertices in the square grid [J].
Haim, YB ;
Litsyn, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) :69-82
[8]  
KARP RM, 1978, DISCRETE MATH, V23, P309, DOI 10.1016/0012-365X(78)90011-0
[9]   On a new class of codes for identifying vertices in graphs [J].
Karpovsky, MG ;
Chakrabarty, K ;
Levitin, LB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) :599-611
[10]  
PACH J, 1995, COMBINATORIAL GEOMET