Lightweight Single Image Super-Resolution With Multi-Scale Spatial Attention Networks

被引:14
|
作者
Soh, Jae Woong [1 ]
Cho, Nam Ik [1 ]
机构
[1] Seoul Natl Univ, INMC, Dept Elect & Comp Engn, Seoul 08826, South Korea
关键词
Feature extraction; Convolution; Spatial resolution; Computer architecture; Training; Convolutional neural networks; Convolutional neural network (CNN); lightweight; multi-scale spatial attention; single image super-resolution (SISR);
D O I
10.1109/ACCESS.2020.2974876
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) generally provide higher performance gain for single image super-resolution (SISR) as the depth and number of parameters are increasing. However, just increasing the layers of straightforward deep networks has a problem that it requires an impractically large number of parameters for obtaining state-of-the-art performance. Instead, some researchers proposed lightweight networks, which is designed with more sophisticated network structures for achieving better performance than the straightforward networks at the same parameter requirement. In this paper, we propose new lightweight Multi-scale Spatial Attention Networks (MSAN) for SISR, which attempt to bring out a better performance from the relatively small number of parameters. Specifically, we adopt a dense connection with feature fusion layers to broadcast abundant features to every level of layers, and propose a double residual structure that provides an additional skip-connection. We also design a Multi-scale Spatial Attention Block (MSAB) to exploit multi-scale spatial contextual information. Furthermore, we introduce a spatial attention module which adaptively focuses on the most informative feature scale in a given region of the image. In the experiments, we validate that the proposed MSAN achieves significant accuracy compared to recent lightweight models and comparable performance to the state-of-the-art methods.
引用
收藏
页码:35383 / 35391
页数:9
相关论文
共 50 条
  • [41] Multi-scale Fractal Coding for Single Image Super-Resolution
    Xie, Wei
    Liu, Jiwei
    Shao, Lizhen
    Jing, Fengwei
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 425 - 434
  • [42] EXPLOITING MULTI-SCALE SPATIAL STRUCTURES FOR SPARSITY BASED SINGLE IMAGE SUPER-RESOLUTION
    Zhang, Yongqin
    Liu, Jiaying
    Bai, Wei
    Guo, Zongming
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3877 - 3881
  • [43] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [44] Efficient Multi-Scale Cosine Attention Transformer for Image Super-Resolution
    Chen, Yuzhen
    Wang, Gencheng
    Chen, Rong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1442 - 1446
  • [45] Image super-resolution with multi-scale fractal residual attention network
    Song, Xiaogang
    Liu, Wanbo
    Liang, Li
    Shi, Weiwei
    Xie, Guo
    Lu, Xiaofeng
    Hei, Xinhong
    COMPUTERS & GRAPHICS-UK, 2023, 113 : 21 - 31
  • [46] A multi-scale enhanced large-kernel attention transformer network for lightweight image super-resolution
    Chang, Kairong
    Jun, Sun
    Biao, Yang
    Hu, Mingzhi
    Yang, Junlong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (03)
  • [47] Single image super-resolution via deep progressive multi-scale fusion networks
    Que, Yue
    Lee, Hyo Jong
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10707 - 10717
  • [48] Single image super-resolution via deep progressive multi-scale fusion networks
    Yue Que
    Hyo Jong Lee
    Neural Computing and Applications, 2022, 34 : 10707 - 10717
  • [49] Mixed multi-scale residual attention networks for single image super-resolution reconstructionMixed multi-scale residual attention networks for...L. Zhang et al.
    Liyun Zhang
    Ming Zhang
    Fei Fan
    Yang Liu
    Multimedia Systems, 2025, 31 (3)
  • [50] Super-resolution based on multi-scale feature aggregation adversarial networks Multi-Scale Super-Resolution with Adversarial Networks
    Song, Wei
    Li, Shuo
    Liao, Bin
    Ning, Keqing
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 356 - 360