Fault Detection of Electric Motors Application using ML Estimation Method

被引:0
作者
Treetrong, Juggrapong [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Tech Educ Fac, Dept Teacher Training Mech Engn, Bangkok, Thailand
来源
MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3 | 2012年 / 591-593卷
关键词
Signal Processing; Fault Detection; Induction Motors; ML Estimation; Maximization Likelihood Estimation; DIAGNOSIS;
D O I
10.4028/www.scientific.net/AMR.591-593.1958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new method of motor fault detection. ML Estimation is proposed as a key technique for signal processing. The stator current is used data for motor fault analysis. ML Estimation is generally applied to estimate signals for nonlinear model. The expectation is that the method can provide information for fault analysis. The method is tested on 3 different motor conditions: healthy, stator fault, and rotor fault motor at full load condition. Based on experiments, the method can differentiate conditions clearly and be also able to measure fault severity levels.
引用
收藏
页码:1958 / 1961
页数:4
相关论文
共 50 条
  • [41] Fault detection in induction motors using Hilbert and Wavelet transforms
    Jimenez, Guillermo A.
    Munoz, Alfredo O.
    Duarte-Mermoud, Manuel A.
    ELECTRICAL ENGINEERING, 2007, 89 (03) : 205 - 220
  • [42] Fault Detection of Induction Motors Using Fourier and Wavelet Analysis
    Bae, Hyeon
    Kim, Youn-Tae
    Kim, Sungshin
    Lee, Sang-Hyuk
    Wang, Bo-Hyeun
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2004, 8 (04) : 431 - 436
  • [43] Distributionally Robust Fault Detection by using Kernel Density Estimation
    Xue, Ting
    Zhong, Maiying
    Luo, Lijia
    Li, Linlin
    Ding, Steven X.
    IFAC PAPERSONLINE, 2020, 53 (02): : 652 - 657
  • [44] Fault detection in induction motors using Hilbert and Wavelet transforms
    Guillermo A. Jiménez
    Alfredo O. Muñoz
    Manuel A. Duarte-Mermoud
    Electrical Engineering, 2007, 89 : 205 - 220
  • [45] Condition Monitoring and Fault Detection in Small Induction Motors Using Machine Learning Algorithms
    Sobhi, Sayedabbas
    Reshadi, MohammadHossein
    Zarft, Nick
    Terheide, Albert
    Dick, Scott
    INFORMATION, 2023, 14 (06)
  • [46] Machine Learning for Inverter-Fed Motors Monitoring and Fault Detection: An Overview
    Garcia-Perez, Diego
    Saeed, Mariam
    Diaz, Ignacio
    Enguita, Jose M.
    Guerrero, Juan Manuel
    Briz, Fernando
    IEEE ACCESS, 2024, 12 : 27167 - 27179
  • [47] Review of Machine Learning Based Fault Detection for Centrifugal Pump Induction Motors
    Sunal, Cem Ekin
    Dyo, Vladimir
    Velisavljevic, Vladan
    IEEE ACCESS, 2022, 10 : 71344 - 71355
  • [48] Fault Detection and Classification for Induction Motors Using Genetic Programming
    Zhang, Yu
    Hu, Ting
    Liang, Xiaodong
    Ali, Mohammad Zawad
    Shabbir, Md Nasmus Sakib Khan
    GENETIC PROGRAMMING, EUROGP 2019, 2019, 11451 : 178 - 193
  • [49] Fourier-Based Adaptive Signal Decomposition Method Applied to Fault Detection in Induction Motors
    Jesus De Santiago-Perez, J.
    Valtierra-Rodriguez, Martin
    Pablo Amezquita-Sanchez, Juan
    Israel Perez-Soto, Gerardo
    Trejo-Hernandez, Miguel
    Rooney Rivera-Guillen, Jesus
    MACHINES, 2022, 10 (09)
  • [50] A PRACTICAL METHOD OF FAULT DETECTION FOR MICRO DC MOTORS ON THE PRODUCTION LINE
    Xie, Zhiping
    Hong, Jianfeng
    Wu, Wei
    Chen, Wenxiang
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (01) : 20 - 27