The rational approximations of the unitary groups

被引:0
作者
Luo, Ming-Xing [1 ,2 ]
Deng, Yun [3 ]
Chen, Xiu-Bo [2 ,4 ]
Yang, Yi-Xian [4 ]
机构
[1] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[3] Sichuan Univ Sci Engn, Inst Comp Sci, Zigong 64300, Peoples R China
[4] Beijing Univ Posts & Telecommun, Informat Secur Ctr, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational approximation; Unitary groups; Household decomposition; Diophantine approximation; QUANTUM COMPUTER; CLASSICAL SIMULATION; POLYNOMIAL-TIME; MATRICES; IMPLEMENTATION; ALGORITHMS; CIRCUITS;
D O I
10.1007/s11128-013-0588-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is to investigate the rational approximation of the unitary groups. Specially, based on the Household decomposition we prove that the rational unitary subgroup is dense in the complex unitary group. Moreover, its random approximate property is characterized by the natural Harr measure, which can be used to obtain random unitary matrix. Our simulation shows that these results may be applied to approximate quantum computations.
引用
收藏
页码:3149 / 3166
页数:18
相关论文
共 34 条
  • [1] ELEMENTARY GATES FOR QUANTUM COMPUTATION
    BARENCO, A
    BENNETT, CH
    CLEVE, R
    DIVINCENZO, DP
    MARGOLUS, N
    SHOR, P
    SLEATOR, T
    SMOLIN, JA
    WEINFURTER, H
    [J]. PHYSICAL REVIEW A, 1995, 52 (05): : 3457 - 3467
  • [2] BHATIA R, 1984, LINEAR MULTILINEAR A, V15, P71, DOI DOI 10.1080/03081088408817578
  • [3] Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices
    Bini, D. A.
    Eidelman, Y.
    Gemignani, L.
    Gohberg, I.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 566 - 585
  • [4] The characteristic polynomial of a random unitary matrix: A probabilistic approach
    Bourgade, P.
    Hughes, C. P.
    Nikeghbali, A.
    Yor, M.
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) : 45 - 69
  • [5] Bravyi S, 2005, QUANTUM INF COMPUT, V5, P216
  • [6] Bravyi S, 2009, CONTEMP MATH, V482, P179
  • [7] Efficient classical simulation of the quantum Fourier transform
    Browne, Daniel E.
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [8] Cassels J.W.S., 1953, INTRO DIOPHANTINE AP
  • [9] Experimental implementation of fast quantum searching
    Chuang, IL
    Gershenfeld, N
    Kubinec, M
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (15) : 3408 - 3411
  • [10] QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER
    DEUTSCH, D
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818): : 97 - 117