A Mask-based Output Layer for Multi-level Hierarchical Classification

被引:3
作者
Boone-Sifuentes, Tanya [1 ]
Bouadjenek, Mohamed Reda [1 ]
Razzak, Imran [2 ]
Hacid, Hakim [3 ]
Nazari, Asef [1 ]
机构
[1] Deakin Univ, Geelong, Vic, Australia
[2] Univ New South Wales, Sydney, NSW, Australia
[3] Technol Innovat Inst, Abu Dhabi, U Arab Emirates
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
关键词
Hierarchical Classification; CNN; Deep Learning;
D O I
10.1145/3511808.3557534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel mask-based output layer for multi-level hierarchical classification, addressing the limitations of existing methods which (i) often do not embed the taxonomy structure being used, (ii) use a complex backbone neural network with.. disjoint output layers that do not constraint each other, (iii) may output predictions that are often inconsistent with the taxonomy in place, and (iv) have often a fixed value of... Specifically, we propose a model agnostic output layer that embeds the taxonomy and that can be combined with any model. Our proposed output layer implements a top-down divide-and-conquer strategy through a masking mechanism to enforce that predictions comply with the embedded hierarchy structure. Focusing on image classification, we evaluate the performance of our proposed output layer on three different datasets, each with a three-level hierarchical structure. Experiments on these datasets show that our proposed mask-based output layer allows to improve several multi-level hierarchical classification models using various performance metrics.
引用
收藏
页码:3833 / 3837
页数:5
相关论文
共 39 条
[1]  
[Anonymous], P CVPR LAS VEG NV US
[2]  
BARBEDO Jayme, 2007, EURASIP J ADV SIG PR, V2007, P1
[3]  
Boone-Sifuentes Tanya, 2022, P 31 ACM INT C INF K
[4]   Relevance- and interface-driven clustering for visual information retrieval [J].
Bouadjenek, Mohamed Reda ;
Sanner, Scott ;
Du, Yihao .
INFORMATION SYSTEMS, 2020, 94
[5]   Relevance-driven Clustering for Visual Information Retrieval on Twitter [J].
Bouadjenek, Mohamed Reda ;
Sanner, Scott .
PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), 2019, :349-353
[6]  
Bouadjenek Mohamed Reda, 2017, DATABASE
[7]  
Costa E, 2007, EVALUATION METHODS M, P1
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   FEATURE GROUPING IN A HIERARCHICAL PROBABILISTIC NETWORK [J].
DICKSON, W .
IMAGE AND VISION COMPUTING, 1991, 9 (01) :51-57
[10]  
Dumais S., 2000, P 23 ANN INT ACM SIG, P256