Generalized spectral radius and its max algebra version

被引:15
作者
Mueller, Vladimir [1 ]
Peperko, Aljosa [2 ,3 ]
机构
[1] Inst Czech Acad Sci, Prague 11567, Czech Republic
[2] Univ Ljubljana, Fac Mech Engn, SI-1000 Ljubljana, Slovenia
[3] Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
Generalized spectral radius; Joint spectral radius; Berger-Wang formula; Maximum cycle geometric mean; Max algebra; Schur-Hadamard product; Continuity; Haussdorf distance; Trace; Max-trace; THEOREM; MATRICES; SEMIGROUPS; BOUNDS; SETS;
D O I
10.1016/j.laa.2012.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma subset of C-nxn and Psi subset of R-+(nxn) likra be bounded subsets and let rho(Sigma) and mu(Psi) denote the generalized spectral radius of Sigma and the max algebra version of the generalized spectral radius of Psi, respectively. We apply a single matrix description of mu(Psi) to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets of n x n non-negative matrices. We also obtain a new description of mu(Psi) in terms of the Schur-Hadamard product and prove new trace and max-trace descriptions of mu(Psi) and rho(Sigma). In particular, we show that mu(Psi) = lim(m ->infinity)sup [sup(A is an element of Psi circle times m) tr(circle times)(A)](1/m) = lim(m ->infinity)sup [sup(A is an element of Psi circle times m) tr(A)](1/m) and rho(Sigma) = lim(m ->infinity)sup [sup(B is an element of Sigma m) tr vertical bar B vertical bar](1/m) = lim(m ->infinity)sup [sup(B is an element of Sigma m) tr(circle times)vertical bar B vertical bar](1/m,) where tr(circle times)(A) = max(i=1, ... ,n) a(ii) and vertical bar B vertical bar =[vertical bar b(ij)vertical bar]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1006 / 1016
页数:11
相关论文
共 23 条
[11]   PERFORMANCE EVALUATION OF (MAX,+) AUTOMATA [J].
GAUBERT, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (12) :2014-2025
[12]  
Gaubert S, 2009, LECT NOTES CONTR INF, V389, P291, DOI 10.1007/978-3-642-02894-6_28
[13]   Pmax1 and Smax properties and asymptotic stability in the max algebra [J].
Gursoy, Buket Benek ;
Mason, Oliver .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) :1008-1018
[14]   A max version of the generalized spectral radius theorem [J].
Lur, Yung-Yih .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) :336-346
[15]   Continuity of the generalized spectral radius in max algebra [J].
Lur, Yung-Yih ;
Yang, Wen-Wei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :2301-2311
[16]   On the max version of the generalized spectral radius theorem [J].
Peperko, Aljosa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (10) :2312-2318
[17]   Bounds on the generalized and the joint spectral radius of Hadamard products of bounded sets of positive operators on sequence spaces [J].
Peperko, Aljosa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) :189-201
[18]   On the continuity of the generalized spectral radius in max algebra [J].
Peperko, Aljosa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (04) :902-907
[19]   Inequalities for the spectral radius of non-negative functions [J].
Peperko, Aljosa .
POSITIVITY, 2009, 13 (01) :255-272
[20]  
Shulman V.S., 2008, ARXIV08050209V1MATHF