Generalized spectral radius and its max algebra version

被引:15
作者
Mueller, Vladimir [1 ]
Peperko, Aljosa [2 ,3 ]
机构
[1] Inst Czech Acad Sci, Prague 11567, Czech Republic
[2] Univ Ljubljana, Fac Mech Engn, SI-1000 Ljubljana, Slovenia
[3] Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
Generalized spectral radius; Joint spectral radius; Berger-Wang formula; Maximum cycle geometric mean; Max algebra; Schur-Hadamard product; Continuity; Haussdorf distance; Trace; Max-trace; THEOREM; MATRICES; SEMIGROUPS; BOUNDS; SETS;
D O I
10.1016/j.laa.2012.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma subset of C-nxn and Psi subset of R-+(nxn) likra be bounded subsets and let rho(Sigma) and mu(Psi) denote the generalized spectral radius of Sigma and the max algebra version of the generalized spectral radius of Psi, respectively. We apply a single matrix description of mu(Psi) to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets of n x n non-negative matrices. We also obtain a new description of mu(Psi) in terms of the Schur-Hadamard product and prove new trace and max-trace descriptions of mu(Psi) and rho(Sigma). In particular, we show that mu(Psi) = lim(m ->infinity)sup [sup(A is an element of Psi circle times m) tr(circle times)(A)](1/m) = lim(m ->infinity)sup [sup(A is an element of Psi circle times m) tr(A)](1/m) and rho(Sigma) = lim(m ->infinity)sup [sup(B is an element of Sigma m) tr vertical bar B vertical bar](1/m) = lim(m ->infinity)sup [sup(B is an element of Sigma m) tr(circle times)vertical bar B vertical bar](1/m,) where tr(circle times)(A) = max(i=1, ... ,n) a(ii) and vertical bar B vertical bar =[vertical bar b(ij)vertical bar]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1006 / 1016
页数:11
相关论文
共 23 条
[1]  
Baccelli F., 1992, Synchronization and Linearity
[2]  
Bapat RB, 1998, LINEAR ALGEBRA APPL, V276, P3
[3]   BOUNDED SEMIGROUPS OF MATRICES [J].
BERGER, MA ;
WANG, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 166 :21-27
[4]   Approximating the spectral radius of sets of matrices in the max-algebra is NP-Hard [J].
Blondel, VD ;
Gaubert, S ;
Tsitsiklis, JN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (09) :1762-1765
[5]  
Butkovic P., 2010, Maxlinear systems: theory and algorithms
[6]   Characterization of joint spectral radius via trace [J].
Chen, QD ;
Zhou, XL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) :175-188
[7]   Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices [J].
Dai, Xiongping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :827-833
[8]   THE GENERALIZED SPECTRAL-RADIUS THEOREM - AN ANALYTIC-GEOMETRIC PROOF [J].
ELSNER, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 220 :151-159
[9]  
Elsner L., 1988, LINEAR MULTILINEAR A, V24, P1, DOI DOI 10.1080/03081088808817892
[10]   Bounds for the Perron root using max eigenvalues [J].
Elsner, Ludwig ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :2000-2005