Inclusions Involving Interval-Valued Harmonically Co-Ordinated Convex Functions and Raina's Fractional Double Integrals

被引:9
作者
Bin Mohsin, Bandar [1 ]
Awan, Muhammad Uzair [2 ]
Javed, Muhammad Zakria [2 ]
Budak, Huseyin [3 ]
Khan, Awais Gul [2 ]
Noor, Muhammad Aslam [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] Duzce Univ, Dept Math Fac Sci & Arts, Duzce, Turkey
[4] COMSATS Univ Islamabad, Dept Math, Islamabad, Pakistan
关键词
HADAMARD TYPE INEQUALITIES;
D O I
10.1155/2022/5815993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to obtain some new integral inclusions essentially using the interval-valued harmonically co-ordinated convex functions and kappa-Raina's fractional double integrals. To show the validity of our theoretical results, we also give some numerical examples.
引用
收藏
页数:21
相关论文
共 27 条
[1]   EXISTENCE RESULTS AND THE DIMENSION OF THE SOLUTION SET FOR A NONLOCAL INCLUSIONS PROBLEM WITH MIXED FRACTIONAL DERIVATIVES AND INTEGRALS [J].
Alsaedi, Ahmed ;
Broom, Abrar ;
Ntouyas, Sotiris K. ;
Ahmad, Bashir .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
[2]  
[Anonymous], 1997, Results Math., DOI DOI 10.1007/BF03322144
[3]  
[Anonymous], 1987, Aequationes Math, DOI DOI 10.1007/BF01836150
[4]  
[Anonymous], 2002, Non-connected Convexities and Applications
[5]   FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS [J].
Budak, Huseyin ;
Tunc, Tuba ;
Sarikaya, Mehmet Zeki .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) :705-718
[6]  
Diaz R., 2007, Divulgaciones Matematica, V15, P179
[7]  
Dragomir S S., 2000, Selected Topics on Hermite-Hadamard inequalities and Applications
[8]   On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04) :775-788
[9]   On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings [J].
Du, Tingsong ;
Zhou, Taichun .
CHAOS SOLITONS & FRACTALS, 2022, 156
[10]  
Iscan I, 2014, HACET J MATH STAT, V43, P935