A Generalized SMART Fuzzy Disjunction of Volatility Indicators Applied to Option Pricing in a Binomial Model

被引:1
|
作者
Capotorti, Andrea [1 ]
Figa-Talamanca, Gianna [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Perugia, Italy
[2] Univ Perugia, Dipartimento Econ, Perugia, Italy
来源
SOFT METHODS FOR DATA SCIENCE | 2017年 / 456卷
关键词
Smart average operators; Fuzzy mean; Merging; Coherent conditional probabilities; Fuzzy option pricing; INFORMATION;
D O I
10.1007/978-3-319-42972-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we extend our previous contributions on the elicitation of the fuzzy volatility membership function in option pricing models. More specifically we generalize the SMART disjunction for a multi-model volatility behavior (Uniform, LogNormal, Gamma, ...) and within a double-source (direct vs. indirect) information set. The whole procedure is then applied to the Cox-Ross-Rubinstein framework for option pricing on the S&P500 Index where the historical volatility, computed from the Index returns' time series, and the VIX Index observed data are respectively considered as the direct and indirect sources of knowledge. A suitable distance among the resulting fuzzy option prices and the market bid-ask spread make us appreciate the proposed procedure against the classical fuzzy mean.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [1] A binomial option pricing model under stochastic volatility and jump
    Chang, CC
    Fu, HC
    CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATION, 2001, 18 (03): : 192 - 203
  • [2] Application of Fuzzy Theory to Binomial Option Pricing Model
    Liu, Shu-xia
    Chen, Yi
    Na-Xu
    FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 63 - +
  • [3] A NOVEL OPTION PRICING MODEL VIA FUZZY BINOMIAL DECISION TREE
    Yu, Shang-En Shine
    Huarng, Kun-Huang
    Li, Ming-Yuan Leon
    Chen, Chen-Yuan
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (02): : 709 - 718
  • [4] OPTION PRICING FORMULAS FOR GENERALIZED FUZZY STOCK MODEL
    You, Cuilian
    Bo, Le
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (01) : 387 - 396
  • [5] On the option pricing for a generalization of the binomial model
    Kascheev D.E.
    Journal of Mathematical Sciences, 2000, 99 (3) : 1267 - 1272
  • [6] A flexible binomial option pricing model
    Tian, YS
    JOURNAL OF FUTURES MARKETS, 1999, 19 (07) : 817 - 843
  • [7] THE ACCELERATED BINOMIAL OPTION PRICING MODEL
    BREEN, R
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1991, 26 (02) : 153 - 164
  • [8] GENERALIZED BN-S STOCHASTIC VOLATILITY MODEL FOR OPTION PRICING
    Sengupta, Indranil
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (02)
  • [9] Entropy Binomial Tree Model for Option Pricing
    Li Yinghua
    Li Xingsi
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 151 - 159
  • [10] The binomial option pricing model: The trouble with dividends
    Tian, Yisong S.
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2023,