Quantitative Tomography for Continuous Variable Quantum Systems

被引:24
作者
Landon-Cardinal, Olivier [1 ]
Govia, Luke C. G. [1 ,2 ]
Clerk, Aashish A. [1 ,2 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Univ Chicago, Inst Mol Engn, 5640 S Ellis Ave, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会;
关键词
BIVARIATE LAGRANGE INTERPOLATION; PADUA POINTS; STATE; INFORMATION; GENERATION;
D O I
10.1103/PhysRevLett.120.090501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state- independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
引用
收藏
页数:6
相关论文
共 45 条
  • [1] Altepeter JB, 2004, LECT NOTES PHYS, V649, P113
  • [2] Generalized Husimi functions: analyticity and information content
    Appleby, DM
    [J]. JOURNAL OF MODERN OPTICS, 1999, 46 (05) : 825 - 841
  • [3] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    [J]. SIAM REVIEW, 2004, 46 (03) : 501 - 517
  • [4] Direct measurement of the Wigner function of a one-photon Fock state in a cavity
    Bertet, P
    Auffeves, A
    Maioli, P
    Osnaghi, S
    Meunier, T
    Brune, M
    Raimond, JM
    Haroche, S
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (20) : 200402 - 200402
  • [5] Bivariate Lagrange interpolation at the Padua points: The generating curve approach
    Bos, Len
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    Xu, Yuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 15 - 25
  • [6] Quantum information with continuous variables
    Braunstein, SL
    van Loock, P
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 513 - 577
  • [7] Bivariate polynomial interpolation on the square at new nodal sets
    Caliari, M
    De Marchi, S
    Vianello, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) : 261 - 274
  • [8] Bivariate Lagrange interpolation at the Padua points: Computational aspects
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 284 - 292
  • [9] Microwave Photon Counter Based on Josephson Junctions
    Chen, Y. -F.
    Hover, D.
    Sendelbach, S.
    Maurer, L.
    Merkel, S. T.
    Pritchett, E. J.
    Wilhelm, F. K.
    McDermott, R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [10] Cheney Elliott Ward, 2009, A Course in Approximation Theory, V101