Modeling Multifrequency Pol-InSAR Data From the Percolation Zone of the Greenland Ice Sheet

被引:14
作者
Fischer, Georg [1 ,2 ]
Papathanassiou, Konstantinos P. [3 ]
Hajnsek, Irena [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Inst HR, Polarimetr SAR Interferometry Res Grp, D-82234 Wessling, Germany
[2] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
[3] German Aerosp Ctr DLR, Microwaves & Radar Inst HR, Informat Retrieval Grp, D-82230 Wessling, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 04期
关键词
Glacier; ice sheet; polarimetric synthetic aperture radar interferometry (Pol-InSAR); stratigraphy; synthetic aperture radar (SAR); vertical structure; POLARIMETRIC DECOMPOSITION; SNOW ACCUMULATION; L-BAND; SAR; GLACIER; BACKSCATTER; SIGNALS;
D O I
10.1109/TGRS.2018.2870301
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The analysis of data from an airborne synthetic aperture radar (SAR) campaign in the percolation zone of Greenland revealed an interferometric coherence undulation behavior with respect to vertical wavenumber, which cannot be explained with existing models. We propose a model extension that accounts for scattering from distinct layers below the surface. Simulations show that the periodicity of the coherence undulation is mainly driven by the vertical distance between dominant subsurface layers, while the amplitude of the undulation is determined by the ratio between scattering from distinct layers and scattering from the firn volume. We use the model to interpret quad-pol SAR data at X-, C-, S-, L-, and P-bands. The inferred layer depths match layer detections in ground-based radar data and in situ measurements. We conclude that in the percolation zone, scattering from subsurface layers has to be taken into account to correctly interpret SAR data and demonstrate the potential to retrieve geophysical information about the vertical subsurface structure.
引用
收藏
页码:1963 / 1976
页数:14
相关论文
共 34 条
[1]   Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores [J].
Buchardt, S. L. ;
Clausen, H. B. ;
Vinther, B. M. ;
Dahl-Jensen, D. .
CLIMATE OF THE PAST, 2012, 8 (06) :2053-2059
[2]  
Cloude S.R., 2010, Polarisation: applications in remote sensing
[3]   Three-stage inversion process for polarimetric SAR interferometry [J].
Cloude, SR ;
Papathanassiou, KP .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2003, 150 (03) :125-134
[4]   Polarimetric SAR interferometry [J].
Cloude, SR ;
Papathanassiou, KP .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (05) :1551-1565
[5]  
Dall J., 2004, P EUSAR ULM GERM, P247
[6]   Characteristics and small-scale variability of GPR signals and their relation to snow accumulation in Greenland's percolation zone [J].
Dunse, Thorben ;
Eisen, Olaf ;
Helm, Veit ;
Rack, Wolfgang ;
Steinhage, Daniel ;
Parry, Victoria .
JOURNAL OF GLACIOLOGY, 2008, 54 (185) :333-342
[7]   GREENLAND ICE-SHEET SURFACE-PROPERTIES AND ICE DYNAMICS FROM ERS-1 SAR IMAGERY [J].
FAHNESTOCK, M ;
BINDSCHADLER, R ;
KWOK, R ;
JEZEK, K .
SCIENCE, 1993, 262 (5139) :1530-1534
[8]  
Fischer G, 2016, EUSAR PROC, P806
[9]   Relationships between radar backscatter and accumulation rates on the Greenland ice sheet [J].
Forster, RR ;
Jezek, KC ;
Bolzan, J ;
Baumgartner, F ;
Gogineni, SP .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (15-16) :3131-3147
[10]  
Freitag J., 2014, EGU GEN ASS VIENN AU