Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices

被引:98
作者
Goossens, Augustinus M. [1 ]
Driessen, Stefanie C. M. [1 ]
Baart, Tim A. [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Vandersypen, Lieven M. K. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[2] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
基金
欧洲研究理事会;
关键词
Graphene; bilayer graphene; hexagonal boron nitride; confinement; coulomb blockade; quantized conductance; QUANTIZED CONDUCTANCE; QUANTUM;
D O I
10.1021/nl301986q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the fabrication and measurement of nanoscale devices that permit electrostatic confinement in bilayer graphene on a substrate. The graphene bilayer is sandwiched between hexagonal boron nitride bottom and top gate dielectrics. Top gates are patterned such that constrictions and islands can be electrostatically induced. The high quality of the devices becomes apparent from the smooth pinch-off characteristics of the constrictions at low temperature with features indicative of conductance quantization. The islands exhibit clear Coulomb blockade and single-electron transport.
引用
收藏
页码:4656 / 4660
页数:5
相关论文
共 30 条
  • [1] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [2] Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing
    Barreiro, A.
    Boerrnert, F.
    Ruemmeli, M. H.
    Buechner, B.
    Vandersypen, L. M. K.
    [J]. NANO LETTERS, 2012, 12 (04) : 1873 - 1878
  • [3] THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT
    BEENAKKER, CWJ
    [J]. PHYSICAL REVIEW B, 1991, 44 (04) : 1646 - 1656
  • [4] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [7] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [8] Mechanical cleaning of graphene
    Goossens, A. M.
    Calado, V. E.
    Barreiro, A.
    Watanabe, K.
    Taniguchi, T.
    Vandersypen, L. M. K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (07)
  • [9] Electron Transport in Disordered Graphene Nanoribbons
    Han, Melinda Y.
    Brant, Juliana C.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [10] Few-electron quantum dots
    Kouwenhoven, LP
    Austing, DG
    Tarucha, S
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (06) : 701 - 736