Random Private Quantum States

被引:0
作者
Christandl, Matthias [1 ]
Ferrara, Roberto [1 ,2 ]
Lancien, Cecilia [3 ,4 ,5 ,6 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, DK-2100 Copenhagen, Denmark
[2] Tech Univ Munich, Lehr & Forsch Einheit Nachrichtentech, D-80333 Munich, Germany
[3] Univ Complutense Madrid, Dept Anal Matemat, Madrid 28040, Spain
[4] Inst Ciencias Matemat, Madrid 28049, Spain
[5] Inst Math Toulouse, F-31062 Toulouse, France
[6] CNRS, F-31062 Toulouse, France
基金
欧洲研究理事会;
关键词
Entropy; Quantum entanglement; Repeaters; Tools; Privacy; Machine-to-machine communications; Quantum; random; state; privacy; private; entanglement; key; distillation; RELATIVE ENTROPY; CONTINUITY;
D O I
10.1109/TIT.2020.2973155
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of properties of randomly chosen quantum states has in recent years led to many insights into quantum entanglement. In this work, we study private quantum states from this point of view. Private quantum states are bipartite quantum states characterised by the property that carrying out simple local measurements yields a secret bit. This feature is shared by the maximally entangled pair of quantum bits, yet private quantum states are more general and can in their most extreme form be almost bound entangled. In this work, we study the entanglement properties of random private quantum states and show that they are hardly distinguishable from separable states and thus have low repeatable key, despite containing one bit of key. The technical tools we develop are centred around the concept of locally restricted measurements and include a new operator ordering, bounds on norms under tensoring with entangled states and a continuity bound for a relative entropy measure.
引用
收藏
页码:4621 / 4640
页数:20
相关论文
共 40 条
[1]  
Anderson G. W., 2010, CAMBRIDGE STUDIES AD, V118
[2]   Tensor products of convex sets and the volume of separable states on N qudits -: art. no. 022109 [J].
Aubrun, G ;
Szarek, SJ .
PHYSICAL REVIEW A, 2006, 73 (02)
[3]  
Aubrun G, 2015, QUANTUM INF COMPUT, V15, P513
[4]   Entanglement Thresholds for Random Induced States [J].
Aubrun, Guillaume ;
Szarek, Stanislaw J. ;
Ye, Deping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (01) :129-171
[5]   A sharp continuity estimate for the von Neumann entropy [J].
Audenaert, Koenraad M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8127-8136
[6]   Limitations on quantum key repeaters [J].
Baeuml, Stefan ;
Christandl, Matthias ;
Horodecki, Karol ;
Winter, Andreas .
NATURE COMMUNICATIONS, 2015, 6
[7]   On variational expressions for quantum relative entropies [J].
Berta, Mario ;
Fawzi, Omar ;
Tomamichel, Marco .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (12) :2239-2265
[8]  
Bhatia Rajendra, 1997, Matrix Analysis, Graduate texts in mathematics, V169, DOI 10.1007/978-1-4612-0653-8
[9]  
Bruss D., 2000, PHYS REV A, V61
[10]  
Christandl M., 2012, BANFF INT RES STAT W